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Motivation: Asymmetric Traversal Costs =2 ICML
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» Real-world robotic navigation often
has direction-dependent and
irreversible traversal costs. L
» Traditional RL algorithms typically R
assume symmetry in costs. . N
» Asymmetric costs: uphill vs. RIS
downhill, irreversible transitions. e C\%
» Recent quasimetric RL approaches @(- - (\\;\\\“
relax symmetry assumptions. Oo‘“

» However, they often neglect:

» Explicit path-dependent cost
modeling.
> Rigorous safety guarantees.
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Our Contributions: Quasi-Potential Reinforcement Learning -8 ICMVL
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Novel Decomposition: d(s,g) = ®(g) — ®(s) + V(s — g)
» Path-Independent Potential (¢): Reusable costs, analogous to gravitational
potentials.

> . Irreversible or dissipative costs, like friction.

Benefits:
» Clear interpretability and accurate modeling of directionality.
» Enhanced exploration and efficient policy optimization.

» Safety via Lyapunov stability constraints.

Theoretical Advances:
> Improved convergence rate: O(v/T) vs. previous O(T).
» Lyapunov-based safety guarantees ensure minimal constraint violations.
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International Conference
Safety Layer On Machine Learning
V(s) <e

Lyapunov
Constraint

12(g) — @(s)
;

Envlmnment States Encoder Latent z Tmnsmon ., Residual
(s, 9,7 Ty z a) FWo(s — g)

Safe Exploration

'
'
i d(s,g) = 2+ ¥
'
'
'

Action @

Policy
7 (als, 9)

» Decomposes asymmetric traversal costs into:
» Path-independent potential .
» Path-dependent residual W.

Integrates Lyapunov safety constraints for stable exploration. a1



Algorithm: QPRL = ICML

International Conference
On Machine Learning

Algorithm 1 Quasi-Potential Reinforcement Learning (QPRL)

1. Input: Replay buffer D, learning rates o, oy, g, v, threshold e
2: for iteration =1 to N do

3. Sample batch {(s;, aj, s/, ci,g)}8, ~D

Update Encoder & Transition Model:

zi = fo(si), 2 = Ty(i, a)

Update ¢, minimizing ||2/ — f4(s})
Update Quasi-Potential Function ¢, V:

Update # minimizing cost reconstruction and constraint losses
Update Policy with Safety Layer:

10:  Update w minimizing quasi-potential cost with safety constraints
11: end for

I
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Algorithm: QPRL (Cont'd) = ICML
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» Encoder f; and transition model T: Onachins earing

» Compress state representation.
» Predict next latent state efficiently.

» Quasi-potential ¢, V:

» Reconstruct asymmetric costs.
» Ensure quasimetric constraints (triangle inequality, non-negativity).

» Policy optimization (safety enforced):
E[®y(s)] < Po(s) + €

» Safety penalty in policy loss:
1B
Lr=7% ;[d,- + X ReLU(®g(2]) — y(si) — €)]

» Dynamic Lagrange multiplier A enforces safe transitions.
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Agent must navigate from start (S) to goal (G).

Horizontal moves cost 1.

Climbing upward costs 2, descending costs 0.5.

Walls are impassable, illustrating direction-dependent navigation.
Evaluates QPRL’s handling of asymmetric costs and safety constraints.
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Environment Metric QPRL (Ours) QRL Contrastive RL DDPG+HER SAC+HER
Asymmetric GridWorld Success Rate (%) 92.5 +£2.2 87.3+3.0 82.4 + 35 789+42 803+4.0
MountainCar Normalized Return -95.6 + 4.1 -108.4 £6.7 -1183 +£81 -1255+76 -12124+7.0
FetchPush Success Rate (%) 91.2 £ 3.0 855+ 36 793 £41 738 £45 77.0+43
LunarLander Success Rate (%) 88.9 + 3.4 814 +4.0 76.7 + 4.5 725+50 742448
Maze2D Success Rate (%) 85.3 £3.7 781+43 726 + 4.7 689+52 701449

» QPRL consistently achieves highest success rates and best returns.
» Notably reduces variance across multiple random seeds.

» Demonstrates clear empirical advantage in asymmetric environments.
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Performance Analysis: Learning Curves = ICML
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» QPRL (blue line) achieves high performance earliest.
» Maintains highest asymptotic success rates.
» Shows lower variance in performance, indicating stability.

» Results statistically significant (p < 0.01, paired t-test).
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Average Traversal Cost
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Cost Comparison

Average Traversal Costs across Different Environments
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Average traversal cost comparison. QPRL

demonstrates the lowest cost, showing its
advantage in exploiting asymmetric dynamics.
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Env.  Method Sym. (%) Asym. (%)  Gap (%)
GridWorld

QPRL 94.1+1.8 88.7 + 2.5 54

QRL 92.3 +£ 2.0 83.5+ 2.8 8.8

SAC+HER 90.2 +2.3 81.0+3.2 9.2

DDPG+HER 89.8 +2.5 80.5+ 3.5 9.3
MountainCar

QPRL —90.5 + 4.3 —98.2+5.0 7.7

QRL —88.2+ 4.1 —96.5+ 5.2 8.3

SAC+HER —87.0 + 4.0 —95.8 + 5.3 8.8

DDPG+HER —86.5 + 4.2 —94.5+5.1 8.0
FetchPush

QPRL 92.0 2.2 85.3 £ 3.1 6.7

QRL 90.5+2.3 81.0 +3.2 9.5

SAC+HER 89.8 + 2.5 79.8 £ 3.5 10.0

DDPG+HER 88.5 + 2.4 78.5+ 3.4 10.0
LunarlLander

QPRL 88.6 + 3.4 82.4 +£ 3.7 6.2

QRL 87.0+3.5 80.0 + 4.0 7.0

SAC+HER 85.5 + 3.8 77.5+ 4.2 8.0

DDPG+HER 84.0 + 3.6 76.0 + 4.1 8.0
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» We proposed Quasi-Potential Reinforcement Learning (QPRL), a RL
framework tailored for asymmetric traversal costs.

» QPRL decomposes cost into path-independent potentials and path-dependent
residuals, enabling efficient and interpretable learning.

» Achieves state-of-the-art performance in multiple tasks with improved sample
efficiency and reduced traversal costs.

> Integrates Lyapunov-based safety constraints to avoid irreversible transitions
during learning.

» Future work includes real-world deployment in:

» Topological navigation with sparse rewards.
» Multi-agent systems for safe coordination .

/11



