

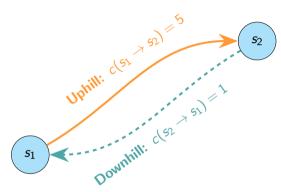
QPRL: Learning Optimal Policies with Quasi-Potential Functions for Asymmetric Traversal

Jumman Hossain¹, Nirmalya Roy¹

¹University of Maryland, Baltimore County, USA

Motivation: Asymmetric Traversal Costs

- Real-world robotic navigation often has direction-dependent and irreversible traversal costs
- ► Traditional RL algorithms typically assume symmetry in costs.
- Asymmetric costs: uphill vs. downhill, irreversible transitions.
- Recent quasimetric RL approaches relax symmetry assumptions.
- ► However, they often neglect:
 - Explicit path-dependent cost modeling.
 - Rigorous safety guarantees.



Our Contributions: Quasi-Potential Reinforcement Learning :

Novel Decomposition:
$$d(s,g) = \Phi(g) - \Phi(s) + \Psi(s \rightarrow g)$$

- Path-Independent Potential (Φ): Reusable costs, analogous to gravitational potentials.
- **Path-Dependent Residual** (Ψ): Irreversible or dissipative costs, like friction.

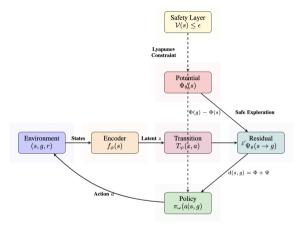
Benefits:

- Clear interpretability and accurate modeling of directionality.
- Enhanced exploration and efficient policy optimization.
- Safety via Lyapunov stability constraints.

Theoretical Advances:

- ▶ Improved convergence rate: $\tilde{\mathcal{O}}(\sqrt{T})$ vs. previous $\tilde{\mathcal{O}}(T)$.
- Lyapunov-based safety guarantees ensure minimal constraint violations.

QPRL Framework



- ▶ Decomposes asymmetric traversal costs into:
 - ▶ Path-independent potential Φ.
 - Path-dependent residual Ψ.
- ▶ Integrates Lyapunov safety constraints for stable exploration.

Algorithm: QPRL

Algorithm 1 Quasi-Potential Reinforcement Learning (QPRL)

- 1: **Input:** Replay buffer \mathcal{D} , learning rates $\alpha_{\phi}, \alpha_{\psi}, \alpha_{\theta}, \alpha_{\omega}$, threshold ϵ
- 2: **for** iteration = 1 to N **do**
- 3: Sample batch $\{(s_i, a_i, s_i', c_i, g_i)\}_{i=1}^B \sim \mathcal{D}$
- 4: Update Encoder & Transition Model:
- 5: $z_i = f_{\phi}(s_i), \ \hat{z}'_i = T_{\psi}(z_i, a_i)$
- 6: Update ϕ, ψ minimizing $\|\hat{z}'_i f_{\phi}(s'_i)\|^2$
- 7: Update Quasi-Potential Function Φ, Ψ :
- 8: Update θ minimizing cost reconstruction and constraint losses
- 9: Update Policy with Safety Layer:
- 10: Update ω minimizing quasi-potential cost with safety constraints
- 11: end for

Algorithm: QPRL (Cont'd)

- **Encoder** f_{ϕ} and transition model T_{ψ} :
 - Compress state representation.
 - Predict next latent state efficiently.
- Quasi-potential Φ, Ψ:
 - Reconstruct asymmetric costs.
 - Ensure quasimetric constraints (triangle inequality, non-negativity).
- ▶ Policy optimization (safety enforced):

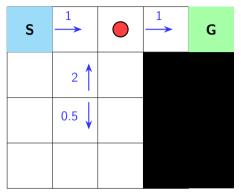
$$\mathbb{E}[\Phi_{\theta}(s')] \leq \Phi_{\theta}(s) + \epsilon$$

Safety penalty in policy loss:

$$\mathcal{L}_{\pi} = rac{1}{B} \sum_{i=1}^{B} [\hat{d}_i + \lambda \cdot \mathsf{ReLU}(\Phi_{ heta}(\hat{z}_i') - \Phi_{ heta}(s_i) - \epsilon)]$$

Dynamic Lagrange multiplier λ enforces safe transitions.

Experimental Evaluation: Asymmetric GridWorld



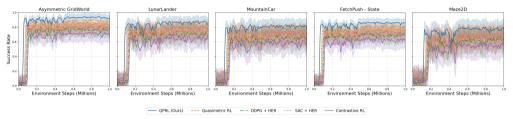
- Agent must navigate from start (S) to goal (G).
- ► Horizontal moves cost 1.
- Climbing upward costs 2, descending costs 0.5.
- ▶ Walls are impassable, illustrating direction-dependent navigation.
- Evaluates QPRL's handling of asymmetric costs and safety constraints.

Experimental Results: Performance Comparison

Environment	Metric	QPRL (Ours)	QRL	Contrastive RL	DDPG+HER	SAC+HER
Asymmetric GridWorld	Success Rate (%)	$\textbf{92.5}\pm\textbf{2.2}$	87.3 ± 3.0	82.4 ± 3.5	78.9 ± 4.2	80.3 ± 4.0
MountainCar	Normalized Return	$\textbf{-95.6}\pm\textbf{4.1}$	-108.4 ± 6.7	-118.3 \pm 8.1	-125.5 ± 7.6	-121.2 ± 7.0
FetchPush	Success Rate (%)	$\textbf{91.2}\pm\textbf{3.0}$	85.5 ± 3.6	79.3 ± 4.1	73.8 ± 4.5	77.0 ± 4.3
LunarLander	Success Rate (%)	$\textbf{88.9}\pm\textbf{3.4}$	81.4 ± 4.0	76.7 ± 4.5	72.5 ± 5.0	74.2 ± 4.8
Maze2D	Success Rate (%)	$\textbf{85.3}\pm\textbf{3.7}$	78.1 ± 4.3	72.6 ± 4.7	68.9 ± 5.2	70.1 ± 4.9

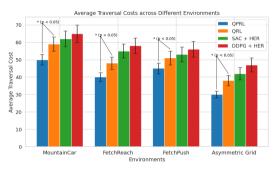
- QPRL consistently achieves highest success rates and best returns.
- ▶ Notably reduces variance across multiple random seeds.
- Demonstrates clear empirical advantage in asymmetric environments.

Performance Analysis: Learning Curves



- ▶ QPRL (blue line) achieves **high performance** earliest.
- ► Maintains highest asymptotic success rates.
- Shows lower variance in performance, indicating stability.
- Results statistically significant (p < 0.01, paired t-test).

Traversal Cost Comparison



Average traversal cost comparison. QPRL

demonstrates the **lowest cost**, showing its advantage in exploiting asymmetric dynamics.

				OTTIVICACTION EC
Env.	Method	Sym. (%)	Asym. (%)	Gap (%)
GridW	'orld			
	QPRL	94.1 ± 1.8	88.7 ± 2.5	5.4
	QRL	92.3 ± 2.0	83.5 ± 2.8	8.8
	SAC+HER	90.2 ± 2.3	81.0 ± 3.2	9.2
	DDPG+HER	89.8 ± 2.5	80.5 ± 3.5	9.3
Mount	ainCar			
	QPRL	-90.5 ± 4.3	-98.2 ± 5.0	7.7
	QRL	-88.2 ± 4.1	-96.5 ± 5.2	8.3
	SAC+HER	-87.0 ± 4.0	-95.8 ± 5.3	8.8
	DDPG+HER	-86.5 ± 4.2	-94.5 ± 5.1	8.0
FetchF	Push			
	QPRL	92.0 ± 2.2	85.3 ± 3.1	6.7
	QRL	90.5 ± 2.3	81.0 ± 3.2	9.5
	SAC+HER	89.8 ± 2.5	79.8 ± 3.5	10.0
	DDPG+HER	88.5 ± 2.4	78.5 ± 3.4	10.0
Lunarl	ander			
	QPRL	88.6 ± 3.4	82.4 ± 3.7	6.2
	QRL	87.0 ± 3.5	80.0 ± 4.0	7.0
	SAC+HER	85.5 ± 3.8	77.5 ± 4.2	8.0
	DDPG+HER	84.0 ± 3.6	76.0 ± 4.1	8.0

Conclusion

- We proposed Quasi-Potential Reinforcement Learning (QPRL), a RL framework tailored for asymmetric traversal costs.
- ▶ QPRL decomposes cost into **path-independent potentials** and **path-dependent residuals**, enabling efficient and interpretable learning.
- Achieves state-of-the-art performance in multiple tasks with improved sample efficiency and reduced traversal costs.
- Integrates Lyapunov-based safety constraints to avoid irreversible transitions during learning.
- ► Future work includes real-world deployment in:
 - ► **Topological navigation** with sparse rewards.
 - Multi-agent systems for safe coordination .