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Motivation: Asymmetric Traversal Costs

▶ Real-world robotic navigation often
has direction-dependent and
irreversible traversal costs.

▶ Traditional RL algorithms typically
assume symmetry in costs.

▶ Asymmetric costs: uphill vs.
downhill, irreversible transitions.

▶ Recent quasimetric RL approaches
relax symmetry assumptions.

▶ However, they often neglect:
▶ Explicit path-dependent cost

modeling.
▶ Rigorous safety guarantees.
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Our Contributions: Quasi-Potential Reinforcement Learning

Novel Decomposition: d(s, g) = Φ(g)− Φ(s) + Ψ(s → g)

▶ Path-Independent Potential (Φ): Reusable costs, analogous to gravitational
potentials.

▶ Path-Dependent Residual (Ψ): Irreversible or dissipative costs, like friction.

Benefits:

▶ Clear interpretability and accurate modeling of directionality.

▶ Enhanced exploration and efficient policy optimization.

▶ Safety via Lyapunov stability constraints.

Theoretical Advances:

▶ Improved convergence rate: Õ(
√
T ) vs. previous Õ(T ).

▶ Lyapunov-based safety guarantees ensure minimal constraint violations.
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QPRL Framework

▶ Decomposes asymmetric traversal costs into:
▶ Path-independent potential Φ.
▶ Path-dependent residual Ψ.

▶ Integrates Lyapunov safety constraints for stable exploration.
▶ Enables efficient and safe policy optimization.
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Algorithm: QPRL

Algorithm 1 Quasi-Potential Reinforcement Learning (QPRL)

1: Input: Replay buffer D, learning rates αϕ, αψ, αθ, αω, threshold ϵ
2: for iteration = 1 to N do
3: Sample batch {(si , ai , s ′i , ci , gi )}Bi=1 ∼ D
4: Update Encoder & Transition Model:
5: zi = fϕ(si ), ẑ

′
i = Tψ(zi , ai )

6: Update ϕ, ψ minimizing ∥ẑ ′i − fϕ(s
′
i )∥2

7: Update Quasi-Potential Function Φ,Ψ:
8: Update θ minimizing cost reconstruction and constraint losses
9: Update Policy with Safety Layer:

10: Update ω minimizing quasi-potential cost with safety constraints
11: end for
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Algorithm: QPRL (Cont’d)
▶ Encoder fϕ and transition model Tψ:

▶ Compress state representation.
▶ Predict next latent state efficiently.

▶ Quasi-potential Φ,Ψ:
▶ Reconstruct asymmetric costs.
▶ Ensure quasimetric constraints (triangle inequality, non-negativity).

▶ Policy optimization (safety enforced):

E[Φθ(s ′)] ≤ Φθ(s) + ϵ

▶ Safety penalty in policy loss:

Lπ =
1

B

B∑
i=1

[d̂i + λ · ReLU(Φθ(ẑ ′i )− Φθ(si )− ϵ)]

▶ Dynamic Lagrange multiplier λ enforces safe transitions.
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Experimental Evaluation: Asymmetric GridWorld
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▶ Agent must navigate from start (S) to goal (G).
▶ Horizontal moves cost 1.
▶ Climbing upward costs 2, descending costs 0.5.
▶ Walls are impassable, illustrating direction-dependent navigation.
▶ Evaluates QPRL’s handling of asymmetric costs and safety constraints.
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Experimental Results: Performance Comparison

Environment Metric QPRL (Ours) QRL Contrastive RL DDPG+HER SAC+HER

Asymmetric GridWorld Success Rate (%) 92.5 ± 2.2 87.3 ± 3.0 82.4 ± 3.5 78.9 ± 4.2 80.3 ± 4.0
MountainCar Normalized Return -95.6 ± 4.1 -108.4 ± 6.7 -118.3 ± 8.1 -125.5 ± 7.6 -121.2 ± 7.0
FetchPush Success Rate (%) 91.2 ± 3.0 85.5 ± 3.6 79.3 ± 4.1 73.8 ± 4.5 77.0 ± 4.3
LunarLander Success Rate (%) 88.9 ± 3.4 81.4 ± 4.0 76.7 ± 4.5 72.5 ± 5.0 74.2 ± 4.8
Maze2D Success Rate (%) 85.3 ± 3.7 78.1 ± 4.3 72.6 ± 4.7 68.9 ± 5.2 70.1 ± 4.9

▶ QPRL consistently achieves highest success rates and best returns.

▶ Notably reduces variance across multiple random seeds.

▶ Demonstrates clear empirical advantage in asymmetric environments.
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Performance Analysis: Learning Curves

▶ QPRL (blue line) achieves high performance earliest.

▶ Maintains highest asymptotic success rates.

▶ Shows lower variance in performance, indicating stability.

▶ Results statistically significant (p < 0.01, paired t-test).
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Traversal Cost Comparison

Average traversal cost comparison. QPRL

demonstrates the lowest cost, showing its
advantage in exploiting asymmetric dynamics.

Env. Method Sym. (%) Asym. (%) Gap (%)

GridWorld
QPRL 94.1 ± 1.8 88.7 ± 2.5 5.4
QRL 92.3 ± 2.0 83.5 ± 2.8 8.8
SAC+HER 90.2 ± 2.3 81.0 ± 3.2 9.2
DDPG+HER 89.8 ± 2.5 80.5 ± 3.5 9.3

MountainCar
QPRL −90.5 ± 4.3 −98.2 ± 5.0 7.7
QRL −88.2 ± 4.1 −96.5 ± 5.2 8.3
SAC+HER −87.0 ± 4.0 −95.8 ± 5.3 8.8
DDPG+HER −86.5 ± 4.2 −94.5 ± 5.1 8.0

FetchPush
QPRL 92.0 ± 2.2 85.3 ± 3.1 6.7
QRL 90.5 ± 2.3 81.0 ± 3.2 9.5
SAC+HER 89.8 ± 2.5 79.8 ± 3.5 10.0
DDPG+HER 88.5 ± 2.4 78.5 ± 3.4 10.0

LunarLander
QPRL 88.6 ± 3.4 82.4 ± 3.7 6.2
QRL 87.0 ± 3.5 80.0 ± 4.0 7.0
SAC+HER 85.5 ± 3.8 77.5 ± 4.2 8.0
DDPG+HER 84.0 ± 3.6 76.0 ± 4.1 8.0
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Conclusion

▶ We proposed Quasi-Potential Reinforcement Learning (QPRL), a RL
framework tailored for asymmetric traversal costs.

▶ QPRL decomposes cost into path-independent potentials and path-dependent
residuals, enabling efficient and interpretable learning.

▶ Achieves state-of-the-art performance in multiple tasks with improved sample
efficiency and reduced traversal costs.

▶ Integrates Lyapunov-based safety constraints to avoid irreversible transitions
during learning.

▶ Future work includes real-world deployment in:
▶ Topological navigation with sparse rewards.
▶ Multi-agent systems for safe coordination .

11 / 11


