

QPRL: Learning Optimal Policies with Quasi-Potential Functions for Asymmetric Traversal

Jumman Hossain and Nirmalya Roy

Department of Information Systems, University of Maryland, Baltimore County, USA.

LunarLander

Maze2D

 76.7 ± 4.5

 72.6 ± 4.7

 74.2 ± 4.8

 70.1 ± 4.9

 72.5 ± 5.0

 68.9 ± 5.2

Introduction

- Real-world robotic navigation often involves asymmetric and irreversible traversal costs (e.g., uphill vs. downhill paths, one-way transitions).
- Traditional RL and potential-based reward shaping implicitly assume symmetric costs, limiting their effectiveness in such scenarios.
- Recent quasimetric RL methods relax symmetry constraints but:
- Do not explicitly model **path-dependent** traversal costs.
- Lack rigorous safety guarantees.
- Our approach addresses these limitations through explicit quasi-potential decomposition and a Lyapunov-based safety mechanism.

Figure 1: Illustration of asymmetric traversal costs: uphill $(s_1 \rightarrow s_2, \text{cost=5})$ vs. downhill ($s_2 \rightarrow s_1$, cost=1). QPRL explicitly addresses this direction-dependent asymmetry.

Quasi-Potential Reinforcement Learning (OPRL)

Novel Decomposition:

$$d(s,g) = \underbrace{\Phi(g) - \Phi(s)}_{\text{Path-Independent}} + \underbrace{\Psi(s \to g)}_{\text{Path-Dependent}}$$

- Path-Independent Potential (Φ): Reusable costs, analogous to gravitational potentials.
- Path-Dependent Residual (Ψ): Irreversible or dissipative costs, like friction.

Key Benefits:

- Explicit and interpretable modeling of directional asymmetry.
- Improved exploration efficiency and accelerated policy learning.

Theoretical Contributions:

- Faster convergence rate: $\tilde{\mathcal{O}}(\sqrt{T})$, improving upon prior $\tilde{\mathcal{O}}(T)$.
- Provable Lyapunov safety guarantees significantly reduce constraint violations.

QPRL Framework

- Models traversal costs explicitly with two distinct functions:
- **Potential function** Φ : represents reversible, global state costs.
- Residual function Ψ : captures irreversible, direction-specific costs.
- Uses a Lyapunov-inspired constraint (Φ-based safety) to bound state transitions and guide exploration.
- Updates policy and value functions based on decomposed costs for targeted optimization.

Algorithm

Algorithm: Quasi-Potential Reinforcement Learning (QPRL)

- **Input:** Replay buffer \mathcal{D} , learning rates α_{ϕ} , α_{ψ} , α_{θ} , α_{ω} , threshold
- e: **for** iteration = 1 to N **do**
- Sample batch $\{(s_i, a_i, s_i', c_i, g_i)\}_{i=1}^B \sim \mathcal{D}$
- **Update Encoder & Transition Model:**
- $z_i = f_{\phi}(s_i), \hat{z}'_i = T_{\psi}(z_i, a_i)$
- $\mathcal{L}_T = \frac{1}{B} \sum_i \|\hat{z}_i' f_{\phi}(s_i')\|^2$ Update ϕ, ψ using $\nabla_{\phi, \psi} \mathcal{L}_T$
- **Update Quasi-Potential Function:**
- $\mathcal{L}_U = \frac{1}{B} \sum_i \left(\Phi_{\theta}(g_i) \Phi_{\theta}(s_i) + \Psi_{\theta}(s_i \to g_i) c_i \right)^2$ $-\left(c_{i}-\Phi_{\theta}(s_{i}')+\Phi_{\theta}(s_{i})\right)$
- Update θ using $\nabla_{\theta}(\mathcal{L}_U + \lambda \mathcal{L}_{constraint})$
- **Update Policy with Safety Layer:**
- $z_i = f_{\phi}(s_i), a_i = \pi_{\omega}(s_i, g_i)$
- $\hat{z}_i' = T_{\psi}(z_i, a_i)$
- $\hat{d}_{i} = \Phi_{\theta}(g_{i}) \Phi_{\theta}(s_{i}) + \Psi_{\theta}(s_{i} \to g_{i})$ $\mathcal{L}_{\pi} = \frac{1}{B} \sum_{i} \hat{d}_{i} + \lambda \cdot \max \left(0, \Phi_{\theta}(\hat{z}'_{i}) \Phi_{\theta}(s_{i}) \epsilon\right)$ Update ω using $\nabla_{\omega} \mathcal{L}_{\pi}$
- 18: **end for**
- State Encoder (f_{ϕ}) and Transition Model (T_{ψ}) :
- Learn compact latent state representations.
- Efficiently predict next latent states for planning.
- Quasi-Potential Components (Φ, Ψ) :
- Decompose asymmetric traversal costs explicitly.
- Maintain quasimetric properties (triangle inequality, non-negativity).
- Lyapunov-Based Safety Constraint:

$$\mathbb{E}_{s' \sim P(\cdot | s, a)} [\Phi_{\theta}(s')] \leq \Phi_{\theta}(s) + \epsilon$$

Safety-Aware Policy Loss:

$$\mathcal{L}_{\pi} = \frac{1}{B} \sum_{i=1}^{B} \left[\hat{d}_{i} + \lambda \cdot \text{ReLU} \left(\Phi_{\theta}(\hat{z}'_{i}) - \Phi_{\theta}(s_{i}) - \epsilon \right) \right]$$

- Dynamic Lagrange Multiplier (λ):
- Adaptively enforces safety constraints during training.

Theoretical Analysis

Theorem (Convergence) Assuming Lipschitz continuity of Φ and Ψ , **QPRL** attains $\mathcal{O}(\sqrt{T})$ regret, improving on the $\mathcal{O}(T)$ bound of monolithic quasimetric RL.

Lemma (Lyapunov Safety) Under the policy π_{safe} ,

$$\mathbb{E}_{s' \sim P(\cdot \mid s, a)} [\Phi(s')] \leq \Phi(s) + \epsilon, \quad \forall t,$$

guaranteeing recoverability from ϵ -bounded unsafe states.

See main paper for complete proofs.

Evaluation: Asymmetric GridWorld

- Agent must navigate from start (S) to goal (G).
- Costs: horizontal = 1, up = 2, down = 0.5.
- Walls are impassable, illustrating direction-dependent navigation.
- Evaluates QPRL's handling of asymmetric costs and safety constraints.

Performance Comparison QPRL (Ours) **Environment Contrastive RL DDPG+HER SAC+HER** Metric 92.5 ± 2.2 82.4 ± 3.5 78.9 ± 4.2 80.3 ± 4.0 Asymmetric GridWorld Success Rate (%) -118.3 ± 8.1 -108.4 ± 6.7 MountainCar Normalized Return -95.6 ± 4.1 $-125.5 \pm 7.6 \ -121.2 \pm 7.0$ Success Rate (%) 73.8 ± 4.5 77.0 ± 4.3 FetchPush 91.2 ± 3.0 85.5 ± 3.6 79.3 ± 4.1

 88.9 ± 3.4

 85.3 ± 3.7

Table 1: Mean \pm std performance over 5 random seeds on asymmetric-cost benchmarks. QPRL attains the highest success rate (or least-negative return).

 81.4 ± 4.0

 78.1 ± 4.3

• QPRL consistently achieves **highest success rates** and **best returns**.

Success Rate (%)

Success Rate (%)

- Notably reduces variance across multiple random seeds.
- Demonstrates clear empirical advantage in asymmetric environments.

Sample-efficiency and stability across tasks. Success-rate learning curves for all five asymmetric environments. The x-axis shows environment interactions; the y-axis shows mean success rate. QPRL (blue) reaches high performance earliest and maintains the highest asymptotic success with visibly lower variance.

- Fastest convergence: QPRL reaches $\geq 90\%$ success in $\sim 2-3\times$ fewer steps than the best baseline.
- Highest final performance: achieves the top asymptotic success rate on every environment.
- Stable learning: narrow confidence band indicates significantly lower variance across seeds.

Average traversal cost comparison. QPRL demonstrates the lowest cost, showing its advantage in exploiting asymmetric dynamics. Results statistically significant (p < 0.01, paired t-test).

Environment Method Symmetric (%) Asymmetric (%) Gap (%) Asymmetric GridWorld **QPRL** 94.1 ± 1.8 88.7 ± 2.5 92.3 ± 2.0 83.5 ± 2.8 SAC + HER 90.2 ± 2.3 81.0 ± 3.2 DDPG + HER 80.5 ± 3.5 89.8 ± 2.5 *MountainCar* **QPRL** -90.5 ± 4.3 -98.2 ± 5.0 -96.5 ± 5.2 -88.2 ± 4.1 SAC + HER -95.8 ± 5.3 -87.0 ± 4.0 DDPG + HER -86.5 ± 4.2 -94.5 ± 5.1 8.0 FetchPush **QPRL** 92.0 ± 2.2 85.3 ± 3.1 9.5 QRL 90.5 ± 2.3 81.0 ± 3.2 SAC + HER 10.0 89.8 ± 2.5 79.8 ± 3.5 DDPG + HER 88.5 ± 2.4 78.5 ± 3.4 10.0 **QPRL** 88.6 ± 3.4 82.4 ± 3.7 6.2 QRL 87.0 ± 3.5 7.0 80.0 ± 4.0 77.5 ± 4.2 SAC + HER 85.5 ± 3.8 DDPG + HER 84.0 ± 3.6 76.0 ± 4.1

Table 2: Performance on symmetric vs. asymmetric variants of each environment (mean \pm 1 s.d. over 5 seeds). **Gap** (%) is the absolute difference between the two settings—lower is better, indicating robustness to asymmetric traversal costs.