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Introduction Algorithm Performance Comparison
* Real-world robotic navigation often involves asymmetric and irreversible S— : : : : - - -
traversal costs (e.g., uphill vs. downhill paths, one-way transitions). Algorithm: Quasi-Fotential Relnorcement Learning (QFRL) Environment Metric QPRL (Olll’S) QRL Contrastive RL DDPG+HER SAC+HER
N . T i: Input: Replay buffer D, learning rates oy, o, o, oy, threshold : :
* Traditional RL and potential-based reward shaping implicitly assume symmet- : Asymmetric GridWorld Success Rate (%) 92.5 £2.2 §7.34+3.0 82.4 4+ 3.5 789 £4.2 80.31+4.0
ric costs, limiting their effectiveness in such scenarios. > foriteration =110 Ndo MountainCar Normalized Return -95.6 =4.1 -108.4 £6.7 -1183+£8.1 -125.5+7.6 -121.2 + 7.0
* Recent quasimetric RL methods relax symmetry constraints but: : Sample batch {(s;, a;, s:,c;, g;) }:2 1 ~ D
cont uasimetric Rl terhoc 1 sypunety ot A NN N A L N FetchPush Success Rate (%) 91.2+3.0 855+3.6 793+41  73.8+£45 77.0+43
— Do not explicitly model path-dependent traversal costs. : .
. sz = fa(s0), 2= Ty(2, a5) LunarLander Success Rate (%) 889 =34 814+40 76745 72550 742438
— Lack rigorous safety guarantees. . ¢1 Iy 0 N
 Our approach addresses these limitations through explicit j [EJTd:t e§¢% 'l'Zi'n_ @s(si)ﬁll Maze2D Success Rate (%) 853 +3.7 78.1 4.3 72.6 =4.7 689152 70.1 4.9
and a Lyapunov-based safety mechanism. b L 5 oy =1 .
8 Updat(f:[ Quasi-Potential Function: ; Table 1: Mean = std performance over 5 random seeds on asymmetric-cost benchmarks. QPRL attains the highest success rate (or least-negative return).
o Ly =152 (Polgi) — Po(si) + Vo(s; = g) — ;) | | .
, 2 * QPRL consistently achieves highest success rates and best returns.
max (O, Uo(s; — s;) , ,
10 r S * Notably reduces variance across multiple random seeds.
- constraint — B
@ N — (¢ — Py(s ) + CDH(S@))) e Demonstrates clear empirical advantage in asymmetric environments.
\4 11: Update 6 using V(L + Mlconstraint) (
@( P 12 Update Policy with Safety Layer: Learning
V), . . . L .
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Figure 1: Illustration of asymmetric traversal costs: uphill (s; — s9, cost=5) vs. 17 dlipdate w using Vo, Ly 5| i :
downhill (s9 — s1, cost=1). QPRL explicitly addresses this direction-dependent 1. end for e I' | :
asymmetry. » State Encoder (f;) and Transition Model (7): - : | [i
N J | il
. ; ; ; X — Learn compact latent state representations. N | | | | | | | | | | | | PM | | | | | | | | |
QuaSl-POtentlal Re1nf0rcement Learnlng — Efﬁ01ently predict next latent states fOI' planning. . Environment Stepé {Millioﬁs) - Environment Stepé (Millioﬁs} - Environment Stepé [Millioﬁs] - Environment Stepé (Millioﬁs} - Environment Stepé {Millioﬁs) .
(QPRL) * QuaSi-POtential Components (CD’ \Ij): —— QPRL (Qurs) Quasimetric RL —-- DDPG + HER  ------ SAC + HER —— Contrastive RL
Novel Decomposition: - Dec.omp 08¢ as.ymm.etnc trav§rsa1 C.OStS e%p 11c1t1y.. o Sample-efficiency and stability across tasks. Success-rate learning curves for all five asymmetric environments. The x-axis shows environment interactions;,
d(s,g) = ®(g) — D(s) + V(s — g) — Maintain quasimetric properties (triangle inequality, non-negativity). the y-axis shows mean success rate. QPRL (blue) reaches high performance earliest and maintains the highest asymptotic success with visibly lower variance.
P\ AT d — e Lyapunov-Based Safety Constraint:
ath-Independent * Fastest convergence: QPRL reaches > 90% success in ~2—3x fewer steps than the best baseline.
* Path-Independent Potential ($): Reusable costs, analogous to gravitational Eyp (+]s.a) [CD@(S >] < Pyls) +e e Highest final performance: achieves the top asymptotic success rate on every environment.
potentials. e Safety-Aware Policy Loss:  Stable learning: narrow confidence band indicates significantly lower variance across seeds.
. : Irreversible or dissipative costs, like friction. A )
1 A i o
Key Benefits: Lo =2 3" [di+ A ReLU (2() — @(si) — )] Traversal Cost Comparison
° EXpliCit and interpretable modeling of directional asymmetry. 1=1 Average Traversal Costs across Different Environments Environment Method Symmetric (%) Asymmetric (%) Gap (%)
e Improved exploration efficiency and accelerated policy learning.  Dynamic Lagrange Multiplier (\): 70 K 0 - — SETL Asymmetric GridWorld
Theoretical Contributions: - Adaptively enforces safety constraints during training. 60 . 05} *p=o. ﬂ5? : Eﬁi SEERER SEEL 8;1 ?1) i ; 2 22 g i ; g 553 g
e Faster convergence rate: O(+/T), improving upon prior O(T). p . . y 3 < 0.05) . | | | .
g (VT), improving upon prior O(T). Theoretical Analysis 8., SAC + HER 00.2 4 2.3 31.0 4 3.2 9.2
* Provable Lyapunov safety guarantees significantly reduce constraint viola- r DDPG + HER 89.8 £ 2.5 80.5 £ 3.5 9.3
tions. Theorem (Convergence) Assuming Lipschitz continuity of ¢ and W, § 20 MountainCar
\ " |QPRL attains O(+/T) regret, improving on the O(T) bound of mono- u
) X o QPRL —90.5+4.3 —98.2 + 5.0 7.7
QPRL Framework lithic quasimetric RL. . 2% QRL 882441  —06.5+5.2 3.3
Lemma (Lyapunov Safety) Under the policy 7 te, E . SAC + HER 870440 958459 g 3
kS By pisn [0()] < ®(s)+6, Yt DDPG + HER ~ —86.5 = 4.2 —94.5 4 5.1 8.0
Lyapunov E b b'l' f b d d f +0 FetChPuSh
honmeal guaranteeing recoverability from e-bounded unsafe states. O OPRL 090+ 2.9 353 4+ 31 6.7
{ i } \ See main paper for complete proofs. MountainCar FetchReacI? | tFetchPush Asymmetric Grid QRL 00.5 + 2.3 1.0+ 3.2 05
Tol) ] ] ] \ reronmens SAC + HER 89.8 + 2.5 79.8 £ 3.5 10.0
Evaluation: Asymmetrlc GridWorld Average traversal cost compa.ri.son. QPRL c.lemonstre.ltes the lowest cost, DDPG + HER ’R 5 4+ 9 4 795 4+ 3.4 10.0
showing 1ts advantage in exploiting asymmetric dynamics. Results statisti- ;. 7 . 7,
nvnonment States nco er Latent z ransition esidu I I 11 . ﬁ t < 001, ail’ed t—teSt .
(B o e Tw . L sl s - @® —— ¢ cally sigmificant (p P ) QPRL 38.6 = 3.4 82.4+3.7 6.2
QRL 87.0+£ 3.5 80.0 £4.0 7.0
5 1 - SAC + HER 85.0 £ 3.8 7.5+ 4.2 8.0
DDPG + HER 84.0 £ 3.6 76.0 = 4.1 8.0
0.5 _'!
' Table 2: Performance on symmetric vs. asymmetric variants of each environment
 Models traversal costs explicitly with two distinct functions: (mean j: I's.d. over.S seeds): (*Tap.(%) is the absolute dlffere%nce between the
i i : two settings—Ilower 1s better, indicating robustness to asymmetric traversal costs.
— Potential function ®: represents reversible, global state costs.
— Residual function U: captures irreversible, direction-specific costs. * Agent must navigate from start (S) to goal (G).
* Uses a Lyapunov-inspired constraint (d-based safety) to bound state transi- * Costs: horizontal = 1, up =2, down =0.5.
tions and guide exploration. e Walls are impassable, illustrating direction-dependent navigation.
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