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Introduction
• Real-world robotic navigation often involves asymmetric and irreversible

traversal costs (e.g., uphill vs. downhill paths, one-way transitions).

• Traditional RL and potential-based reward shaping implicitly assume symmet-
ric costs, limiting their effectiveness in such scenarios.

• Recent quasimetric RL methods relax symmetry constraints but:

– Do not explicitly model path-dependent traversal costs.
– Lack rigorous safety guarantees.

• Our approach addresses these limitations through explicit quasi-potential de-
composition and a Lyapunov-based safety mechanism.
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Figure 1: Illustration of asymmetric traversal costs: uphill (s1 → s2, cost=5) vs.
downhill (s2 → s1, cost=1). QPRL explicitly addresses this direction-dependent
asymmetry.

Quasi-Potential Reinforcement Learning
(QPRL)

Novel Decomposition:

d(s, g) = Φ(g) − Φ(s)︸ ︷︷ ︸
Path-Independent

+ Ψ(s → g)︸ ︷︷ ︸
Path-Dependent

• Path-Independent Potential (Φ): Reusable costs, analogous to gravitational
potentials.

• Path-Dependent Residual (Ψ): Irreversible or dissipative costs, like friction.

Key Benefits:
• Explicit and interpretable modeling of directional asymmetry.

• Improved exploration efficiency and accelerated policy learning.

Theoretical Contributions:
• Faster convergence rate: Õ(

√
T ), improving upon prior Õ(T ).

• Provable Lyapunov safety guarantees significantly reduce constraint viola-
tions.

QPRL Framework

• Models traversal costs explicitly with two distinct functions:

– Potential function Φ: represents reversible, global state costs.
– Residual function Ψ: captures irreversible, direction-specific costs.

• Uses a Lyapunov-inspired constraint (Φ-based safety) to bound state transi-
tions and guide exploration.

• Updates policy and value functions based on decomposed costs for targeted
optimization.

Algorithm
Algorithm: Quasi-Potential Reinforcement Learning (QPRL)

1: Input: Replay buffer D, learning rates αϕ, αψ, αθ, αω, threshold
ϵ

2: for iteration = 1 to N do
3: Sample batch {(si, ai, s′

i, ci, gi)}
B
i=1 ∼ D

4: Update Encoder & Transition Model:
5: zi = fϕ(si), ẑ′

i = Tψ(zi, ai)
6: LT = 1

B

∑
i ∥ẑ′

i − fϕ(s′
i)∥

2

7: Update ϕ, ψ using ∇ϕ,ψLT
8: Update Quasi-Potential Function:
9: LU = 1

B

∑
i

(
Φθ(gi) − Φθ(si) + Ψθ(si → gi) − ci

)2

10: Lconstraint = 1
B

∑
i

max
(

0, Ψθ(si → s′
i)

− (ci − Φθ(s′
i) + Φθ(si))

)
2

11: Update θ using ∇θ(LU + λLconstraint)
12: Update Policy with Safety Layer:
13: zi = fϕ(si), ai = πω(si, gi)
14: ẑ′

i = Tψ(zi, ai)
15: d̂i = Φθ(gi) − Φθ(si) + Ψθ(si → gi)
16: Lπ = 1

B

∑
i d̂i + λ · max

(
0,Φθ(ẑ′

i) − Φθ(si) − ϵ
)

17: Update ω using ∇ωLπ
18: end for

• State Encoder (fϕ) and Transition Model (Tψ):
– Learn compact latent state representations.
– Efficiently predict next latent states for planning.

• Quasi-Potential Components (Φ, Ψ):
– Decompose asymmetric traversal costs explicitly.
– Maintain quasimetric properties (triangle inequality, non-negativity).

• Lyapunov-Based Safety Constraint:

E s′∼P ( ·|s,a)
[
Φθ(s′)

]
≤ Φθ(s) + ϵ

• Safety-Aware Policy Loss:

Lπ = 1
B

B∑
i=1

[
d̂i + λ · ReLU

(
Φθ(ẑ′

i) − Φθ(si) − ϵ
) ]

• Dynamic Lagrange Multiplier (λ):
– Adaptively enforces safety constraints during training.

Theoretical Analysis
Theorem (Convergence) Assuming Lipschitz continuity of Φ and Ψ,
QPRL attains Õ

(√
T
)

regret, improving on the Õ(T ) bound of mono-
lithic quasimetric RL.
Lemma (Lyapunov Safety) Under the policy πsafe,

Es′∼P (·|s,a)
[
Φ(s′)

]
≤ Φ(s) + ϵ, ∀ t,

guaranteeing recoverability from ϵ-bounded unsafe states.

See main paper for complete proofs.

Evaluation: Asymmetric GridWorld
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• Agent must navigate from start (S) to goal (G).

• Costs: horizontal = 1, up = 2, down = 0.5.

• Walls are impassable, illustrating direction-dependent navigation.

• Evaluates QPRL’s handling of asymmetric costs and safety constraints.

Performance Comparison
Environment Metric QPRL (Ours) QRL Contrastive RL DDPG+HER SAC+HER
Asymmetric GridWorld Success Rate (%) 92.5 ± 2.2 87.3 ± 3.0 82.4 ± 3.5 78.9 ± 4.2 80.3 ± 4.0
MountainCar Normalized Return -95.6 ± 4.1 -108.4 ± 6.7 -118.3 ± 8.1 -125.5 ± 7.6 -121.2 ± 7.0
FetchPush Success Rate (%) 91.2 ± 3.0 85.5 ± 3.6 79.3 ± 4.1 73.8 ± 4.5 77.0 ± 4.3
LunarLander Success Rate (%) 88.9 ± 3.4 81.4 ± 4.0 76.7 ± 4.5 72.5 ± 5.0 74.2 ± 4.8
Maze2D Success Rate (%) 85.3 ± 3.7 78.1 ± 4.3 72.6 ± 4.7 68.9 ± 5.2 70.1 ± 4.9

Table 1: Mean ± std performance over 5 random seeds on asymmetric-cost benchmarks. QPRL attains the highest success rate (or least-negative return).

• QPRL consistently achieves highest success rates and best returns.

• Notably reduces variance across multiple random seeds.

• Demonstrates clear empirical advantage in asymmetric environments.

Learning

Sample-efficiency and stability across tasks. Success-rate learning curves for all five asymmetric environments. The x-axis shows environment interactions;
the y-axis shows mean success rate. QPRL (blue) reaches high performance earliest and maintains the highest asymptotic success with visibly lower variance.

• Fastest convergence: QPRL reaches ≥90% success in ∼2−3× fewer steps than the best baseline.

• Highest final performance: achieves the top asymptotic success rate on every environment.

• Stable learning: narrow confidence band indicates significantly lower variance across seeds.

Traversal Cost Comparison

Average traversal cost comparison. QPRL demonstrates the lowest cost,
showing its advantage in exploiting asymmetric dynamics. Results statisti-
cally significant (p < 0.01, paired t-test).

Project Website

Environment Method Symmetric (%) Asymmetric (%) Gap (%)
Asymmetric GridWorld

QPRL 94.1 ± 1.8 88.7 ± 2.5 5.4
QRL 92.3 ± 2.0 83.5 ± 2.8 8.8
SAC + HER 90.2 ± 2.3 81.0 ± 3.2 9.2
DDPG + HER 89.8 ± 2.5 80.5 ± 3.5 9.3

MountainCar
QPRL −90.5 ± 4.3 −98.2 ± 5.0 7.7
QRL −88.2 ± 4.1 −96.5 ± 5.2 8.3
SAC + HER −87.0 ± 4.0 −95.8 ± 5.3 8.8
DDPG + HER −86.5 ± 4.2 −94.5 ± 5.1 8.0

FetchPush
QPRL 92.0 ± 2.2 85.3 ± 3.1 6.7
QRL 90.5 ± 2.3 81.0 ± 3.2 9.5
SAC + HER 89.8 ± 2.5 79.8 ± 3.5 10.0
DDPG + HER 88.5 ± 2.4 78.5 ± 3.4 10.0

LunarLander
QPRL 88.6 ± 3.4 82.4 ± 3.7 6.2
QRL 87.0 ± 3.5 80.0 ± 4.0 7.0
SAC + HER 85.5 ± 3.8 77.5 ± 4.2 8.0
DDPG + HER 84.0 ± 3.6 76.0 ± 4.1 8.0

Table 2: Performance on symmetric vs. asymmetric variants of each environment
(mean ± 1 s.d. over 5 seeds). Gap (%) is the absolute difference between the
two settings—lower is better, indicating robustness to asymmetric traversal costs.
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