
SynchroSim: An Integrated Co-simulation
Middleware for Heterogeneous Multi-robot System

Emon Dey1, Jumman Hossain1, Nirmalya Roy1, Carl Busart2
1Center for Real-time Distributed Sensing and Autonomy

1Department of Information Systems, University of Maryland, Baltimore County, USA
2DEVCOM Army Research Lab, USA

1{edey1, jumman.hossain, nroy}@umbc.edu
2carl.e.busart.civ@army.mil

Abstract—With the advancement of modern robotics, au-
tonomous agents are now capable of hosting sophisticated al-
gorithms, which enables them to make intelligent decisions. But
developing and testing such algorithms directly in real-world
systems is tedious and may result in the wastage of valuable
resources. Especially for heterogeneous multi-agent systems in
battlefield environments where communication is critical in deter-
mining the system’s behavior and usability. Due to the necessity
of simulators of separate paradigms (co-simulation) to simulate
such scenarios before deploying, synchronization between those
simulators is vital. Existing works aimed at resolving this issue
fall short of addressing diversity among deployed agents. In
this work, we propose SynchroSim, an integrated co-simulation
middleware to simulate a heterogeneous multi-robot system. Here
we propose a velocity difference-driven adjustable window size
approach with a view to reducing packet loss probability. It
takes into account the respective velocities of deployed agents to
calculate a suitable window size before transmitting data between
them. We consider our algorithm specific simulator agnostic but
for the sake of implementation results, we have used Gazebo
as a Physics simulator and NS-3 as a network simulator. Also,
we design our algorithm considering the Perception-Action loop
inside a closed communication channel, which is one of the
essential factors in a contested scenario with the requirement
of high fidelity in terms of data transmission. We validate
our approach empirically at both the simulation and system
level for both line-of-sight (LOS) and non-line-of-sight (NLOS)
scenarios. Our approach achieves a noticeable improvement in
terms of reducing packet loss probability (≈11%), and average
packet delay (≈10%) compared to the fixed window size-based
synchronization approach.

Index Terms—Heterogeneous multi-robot systems, NS-3,
Gazebo, Co-simulation, Synchronization algorithm.

I. INTRODUCTION

In the field of contemporary robotics, multi-agent systems

are set to play a vital part. Due to their ability of forming large

interconnected networks with coordination among agents make

them an integral part in a variety of robotic applications [1],

[2]. For example, Unmanned Aerial Vehicle (UAV) systems

are being increasingly used in a broad range of applications

requiring extensive communications, either to collaborate with

other UAVs [3] with each other or with Unmanned Ground

Vehicles (UGV) [4], [5]. Specifically in battlefield scenarios

where the presence of heterogeneous aerial and ground vehi-

cles coordinating with each other is going to be an essential

feature in the future. The mutual information transfer between

Unmanned Aircraft Systems (UAS), and ground robots can

help to make intelligent decisions in a critical time.

Synchronized communication between UAVs and UGVs can

aid in developing situation awareness in the battlefield among

each deployed device, and also help execute any specific

command through them. Executing such systems directly in

the actual environment may bring in harmful consequences

as they necessitates the extensive fine-tuning of algorithm

parameters [6]. As a result, it is required to simulate the system

beforehand using proper technologies in order to establish

a baseline of confidence. Being motivated by this scope,

research has been started on simulating such an environment

to estimate the probable nature of robots before going to actual

deployment. The main bottleneck in this endeavor lies in the

necessity of synchronizing two different simulators having

disparate operating principles [7], [8]. One of these is physics

simulators that account for replicating the interaction between

physical robots and their operating environment. On the other

hand, network simulators try to estimate the deployed agents’

communication performance over the network.

So, the primary goal should be to connect the two domains

by using existing open-source tools to record closed loop

simulation. This is because multi-agent systems are strenuous

to build; easy and coordinated communication across diverse

technologies can make this process somewhat less difficult.

Some of the existing works have already addressed those

challenges. For example, FlyNetSim [7], ROS-NetSim [6],

CORNET [4], CPS-Sim [9], RoboNetSim [10] are some of

such kinds of works implemented on AirSim [11], ARGoS

[12], Gazebo [13] as physics simulator and OMNeT++ [14],

NS-2 [15], NS-3 [16], Mininet [17] as network simulator.

As a whole, some of the major drawbacks existent is those

works are: i. compatible with either UAVs or UGVs, not

heterogeneous systems, ii. causes low co-simulation speed,

iii. gives rise to float-point arithmetic error, iv. difficult to

set up proper window size for diverse multi-agent setup, and

v. loses synchronization when the simulators relative speed

varies.

With a view to developing a suitable ROS-compatible

synchronizing middleware for the aforementioned scenario,

we propose SynchroSim. It takes into account the number

of agents deployed within a certain cluster and can select

334

2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)

2325-2944/22/$31.00 ©2022 IEEE
DOI 10.1109/DCOSS54816.2022.00061

the most suitable sliding window while sending data among

agents. For simulation experiments, we use two distinct open-

source simulation engines, Gazebo and NS-3. Gazebo uses the

computer’s system clock as the simulation time, while NS-3

presents the process as a distinct sequence of time events.

Additionally, we observe the performance of our algorithm

upon deploying on a cluster consisting of the real world UAVs

and UGVs. To the best of our knowledge, it is the first en-

deavor pointing out the impact of synchronization middleware

on a heterogeneous multi-agent system considering battlefield

as application scenario. The major contributions we claim here

are:

• Co-simulation of heterogeneous multi-agent systems i.e.,
UGV (ground robots), UAV (drones), etc. and preserving
synchronization among them: We propose a simulator

independent co-simulation setting for multi-agent het-

erogeneous environment. Furthermore, we extend our

simulation work into real world robots to validate the

actual deployment performance.

• Improvising sliding window-based synchronization
scheme for diverse multi-agent system : We offer an

application specific modification of sliding window based

synchronizing middleware. We name our approach as

SynchroSim which can vary the window size considering

the velocity difference of the agents for the sake of

synchronization among them with better communication

performance.

• Empirical evaluation considering different application
scenarios: We present our experiment, taking into ac-

count both line-of-sight (LOS) and non-line-of-sight

(NLOS) communication scenarios on the basis of prob-

ability of packet loss, and average packet delay. We

have employed Gazebo as Physics simulator and NS-3

as network simulator to report our experimental results.

Experimental results show that our approach works better

in comparison with the traditional fixed window based

method in ensuring fewer packet losses (on average 10%

improvement) even in challenging NLOS environment

with heterogeneous agents.

II. RELATED WORK

In this section, we will briefly outline the work that has

been done in relation to the various aspects of our system.

A. Simulation Tools

While a comprehensive assessment of currently utilized

simulators is beyond the scope of this paper, we highlight

a few recent noteworthy physics and network simulators that

are most relevant to our setting and have had a significant

influence on this study.

Aiming to bridge the gap between simulation and reality,

AirSim [11] is an open-source platform that is being developed

to assist in the development of autonomous vehicles. AirSim

provides high-fidelity physical and visual simulation that en-

ables the rapid generation of massive amounts of training data

for the development of machine learning models. It’s API

design enables algorithms to be developed against a simulator

and then deployed unchanged on real vehicles. ANVEL [18],

[19] provides such a toolkit by integrating popular graphical

representation approaches, such as those used in video games,

with physically based sensor and UGV platform models. While

both AirSim and ANVEL have major simulation capabilities,

difficulty arises when creating large-scale complex visually

rich environments that are more realistic in their represen-

tation of the real world, and they have fallen behind various

advancements in rendering techniques made by platforms such

as Unreal engine or Unity [20]. We prefer to employ Gazebo

in our communication-realistic scenario because of its superior

realism. Gazebo [5] includes a modular design that enables

the usage of various physics engines, sensor models, and the

creation of 3D worlds to be implemented.

In the case of network simulators, OMNeT++ [14] is a

discrete event network simulation framework that is object-

oriented and modular in design. Additionally, parallel dis-

tributed simulation is supported by OMNeT++ and inter-

participant communications can be accomplished through a

variety of methods. A network emulation program, mininet

[17], allows users to create a realistic virtual network on

a single computer by running genuine kernel, switch and

application code on the network emulator. However, we choose

a state-of-the-art event based simulator NS-3 [17], in which the

scheduler typically performs the events in a sequential manner

without syncing with an external clock. The NS–3 simulator

includes representations of all of the network models that make

up a computer network including network nodes, network

devices, communication channels, communication protocols,

protocol headers, and network packets.

B. Synchronization Methods

At this point, we provide a summary of existing synchro-

nization methods.

CORNET [4] is a variable-stepped multi-robot system sim-

ulation framework that blends physics and network simulators.

CORNET ensures that only one event process can be running

at a time, and a global event scheduler maintains a list of all

the events from both simulators and schedules. CORNET has

the most significant downside is that it has the potential to

cause float-point arithmetic error. CORNET 2.0 [21] extended

the implementation of CORNET to make it applicable to any

robotic framework and the scalability to manage an increasing

number of robots has been demonstrated. FlyNetSim [7] main-

tains a time-stepped-schedule mechanism, however; simulated

network events must be buffered until the next sample time if

a network simulator runs faster than the physical simulation.

Using real-world UAVs and sensors in a simulated complicated

environment is possible with the support of emulation mode

in FlyNetSim where the network simulator allows a real UAV

to communicate with external or simulated resources.

On the other hand, CPS-Sim [9] operates on the basis

of a global event-driven system where the server is forced

to reproduce the exact same time-steps. Global scheduler-

processed events resolve the issue inherent in the time-stepped

335

method, albeit at the expense of overall co-simulation speed.

ROS-NetSim [6] is a sliding window based technique that

keep track of and record network events during the course

of the window period, and then enable the network simulator

to step up to and through the end of the window, but it is

difficult to configure the appropriate window size for multi-

agent systems. In this consideration, we devised the sliding

window method for our heterogeneous multi-agent system.

Additionally, we have added a comparison table. (Tab. I) for

different synchronization mechanisms to get a better idea about

their capabilities and limitations.

In summary, UAV and UGV components are being simu-

lated with 3D visualization using Gazebo, while the network

infrastructure is being provided by NS-3 and middleware is

being developed for the creation of an inter-simulation data-

path with time and position synchronization at both ends using

our co-Simulation of robotic networks.

III. OVERVIEW

In modern battlefield scenarios, where intelligent and dif-

ferent sensor-equipped robots are envisioned to co-exist with

soldiers. Those robots can collect data with the integrated

sensors and can take essential decisions on their further

step through analyzing the collected data. This can aid in

increasing situational awareness if the derived information can

be exchanged with other deployed agents and with the base

stations also. Such a scenario is illustrated in fig 1. Here, the

Fig. 1: A sample multi-master communication framework.

total deployed agents are divided into several clusters. Each

cluster has a cluster head. The cluster heads can communicate

with the agents within the cluster and also among themselves.

Furthermore, all of them can report to a central base station.

Now, before going to the deployment with actual robots of

such systems, it is imperative to simulate such scenarios to get

an idea about the probable behavior after deployment. For this

reason, a combination of a Physics simulator and a Network

simulator is needed to emulate such a communication scenario

in an acceptable manner. But synchronization problem arises

when these two kinds of simulators are asked to collab-

orate. As a solution to this, a synchronization middleware

can be used to bridge that gap. A working flowchart of

such systems is shown in fig 2. This system takes input

Fig. 2: A probable solution to the synchronization issue

between heterogeneous simulators.

from the Physics simulator, the middleware then aligns those

data with a networking event. The Network simulator then

measures the communication performance and those results

can be displayed on the physics simulator interface if needed.

Moreover, at the time of actual deployment, it is possible

to run the ROS nodes of synchronization middleware on the

integrated computing devices of the robots.

IV. METHODOLOGY

In this section, we will walk you through the details of our

proposed algorithm and its working procedure on the selected

application.

A. SynchroSim working Procedure

As described in the earlier sections, our work focuses

mainly on the synchronization aspect of heterogeneous multi-

agent setup. Our proposed algorithm is based upon the sliding

window-based synchronization approach proposed in [6]. The

pivotal design parameter while working with a multi-agent

system is the choice of window size. Fixed window size at all

points will not applicable in such a scenario as different agents

may work better with different radio frequencies and also there

can be disparities in terms of hardware specifications. Syn-
chroSim takes into account the total number of agents present

for a specific scenario and starts with a manually initiated

value for window size. In the event of the data transfer, it

selects the respective publisher and subscriber for that event.

After that, it rigorously checks the velocity difference of the

participating agents to calculate a suitable window size for a

specific communication event. This approach becomes more

evident when it comes to the transmission scenario between

a ground and an aerial vehicle. To maintain the transmitted

information level at a satisfactory point, we chose to utilize

packet loss probability value, one of the most important

parameters to monitor while sending valuable information, in

the operating moment of SynchroSim. The following equation

is employed to inherently calculate packet loss probability and

336

TABLE I: Overview of existing synchronization methods.

Middleware Synchronization Method Principle Drawback Compatibility

Ros-NetSim [6] Sliding Window

Capture and track network events
over the window period and allow
the network simulator to step up to
the end of the window.

Difficult to set up proper window
size for multi-agent systems.

ROS1, UAV & UGV

CORNET [4] Variable-stepped

A global event scheduler maintains
the list of all the events from both
the simulators and schedules
according to their timestamps
allowing only one event process
to run at a time.

Float-point arithmetic error ROS1 & UAV

FlyNetSim [7] Time-stepped with scheduler
Common sampling period to be
used by both simulators.

If the network simulator runs
faster than the physics simulator,
the network events must be buffered
in a cache and wait to be processed
until the next sampling time.

ROS1 & UAV

CPS-Sim [9] Global event driven
The server is forced to reproduce
the exact same time-steps.

Global scheduler processed events
overcomes the problem that occurs
in time-stepped method but limits
the overall co-simulation speed.

Not ROS based

report within a synchronization window:

Packet loss probability,

i
kLp = 1−

iNsb

i
kNpb

(1)

Here, i
kNsb is the number of data packets delivered to the

subscriber and i
kNpb is the number of data packets transmitted

from the publisher. More technical details on the process can

be found in Algorithm 1.

Algorithm 1 Multi-agent synchronization algorithm with ad-

justable window

Require: Total number of agents D, window size w, number

of data packets N , velocity of agents V
Ensure: Synchronization between simulators and calculate

packet loss probability Lp
1: Initialize: Publisher P and subscriber S agents where

P, S ∈ D, begin time = 0, window size w

2: Start simulation: Transmit data packet of selected topic

from publisher

3: Update with begin time t = 0

4: if running event found then
5: Window adjustment: Get the velocity of Publisher

Vp and Subscriber Vs in meters/sec

6: Calculate the adjusted window,

wa = w + (Vp − Vs) /1000 (2)

7: Synchronism Period: Wait until begin time = t

8: Report Lp: Calculate packet loss probability for the

synchronized event

9: Report finished window: Send Update with end time

= t

10: Timestamp update: Update t = t + wa and request

for next window

11: end if

B. Updating Physics and Network Simulator

At the beginning of the simulation, the Physics simulator

determines two key pieces of information about the agents

used for a specific communication round: the distance between

the agents through positional coordinates and velocity. The

network simulator stores information on which communication

scheme to use (we have chosen a TCP/IP-based approach

over UDP for reliability issues), the number of packets,

packet length, and the IPs of both publisher and subscriber

agents. Then the Physics simulator and network simulator are

advanced with one initially fixed window size w. Upon the

advancement, the Physics simulator passes the distance and

velocity information to the network simulator, and the network

simulator calculates the packet loss probability. If the loss

value is within a certain threshold, the result is sent to display.

Otherwise, this information is reported back to the Synchrosim
module and the initial window size is adjusted according to the

algorithm 1. This process continues until a satisfactory result

is achieved for this specific round, and then the initialization

process starts over with a new set of agents.

C. Publisher-Subscriber Architecture

SynchroSim utilizes a publisher subscriber-based architec-

ture to accomplice the data transmission task. We have con-

sidered image as our data type. A cluster was set up with a

combination of a drone and two ground bots. Heterogeneity

was maintained while choosing the ground bots and master-

based ROS [22] communication was implemented. In the case

of communication through the master, all the agents were set

to run within a certain area. The flowchart for this master-

based setup is illustrated in fig 3. The drone was chosen as the

master node and it contained the IPs of all the UGVs. Image

data were streaming from all the UGVs. We have utilized the

Rosbag concept to record the published messages and select

any specific frame to transmit. Rosbag stores the information

it is programmed to save with every timestamp. The images

information can be extracted from that inventory. When an

337

event was initiated, the selected image frame was sent to the

master node. The master node then published the relevant ROS

topic and any agent subscribed to that specific topic can be

eligible to receive that image data. After the completion of

this transmission process, the packet loss probability for that

event was monitored.

Fig. 3: Data transmission flowchart through the master node.

D. Setting up clusters and communication schemes

In the wireless communication domain, a cluster of robots

is a popular setting to measure the inter-agents data transmis-

sion performance. In application scenarios involving contested

environments such as modern battlefields where the flow of

information among heterogeneous multi-robot systems is cru-

cial to increase situational awareness. Among different types

of cluster setup, the master-based system is being investigated

intensively in recent ROS-based research. A sample master-

based multi-agent cluster is illustrated in fig 4. In this work,

we will also utilize this scheme.

To bolster the claim of a working synchronizing middleware

Fig. 4: A cluster consisting multi-agent heterogeneous systems

(left), and Visual demonstration of LOS and NLOS commu-

nication (right).

it is imperative the set up detailed experimentation with two

of the most used communication scheme: line-of-sight (LOS),

non-line-of-sight (NLOS). To define those two schemes, when

there is no obstruction in between the receiver and sender

agents, the data transmission rate becomes higher and this

scenario is known as LOS communication. It is the most

desirable situation for wireless signal transmission. The NLOS

scheme is the opposite of LOS communication and it is the

most common one in the real-world environment. The signal

transmission can be hindered by both natural and man-made

objects. So, a better design of the data transmission scheme is

necessary to avoid the loss of valuable information. A simple

visual representation of LOS an NLOS system can be found in

fig 4. For our experimentation, we have simulated both UGV

and UAV with artificial environment settings containing both

types of communication scenarios.

V. SIMULATION SETUP

To validate the working capability of SynchroSim, we have

arranged simulation scenarios for both LOS/NLOS channels.

The environments are launched on Gazebo; the Physics simu-

lator in our case. The dimension of the chosen environment is

100×100 meters as shown in fig 5. Where each of the grids

signifies 20×20 meters. The environment is designed to host

both LOS/NLOS scenarios and for NLOS abstraction, the en-

vironment is populated with trees mostly. The choice of robotic

agents is done in a heterogeneous fashion; contains both UGV

and UAV. Iris drone with integrated camera as UAV, and two

Husky robots are selected as UGV. One of the Husky robots

is considered the master node. We have used the MAVROS
package to establish the connection between the Gazebo and

the Iris drone, which runs on the MAVLink autopilot setup

and an integrated PX4 flight stack to maneuver the drone.

For the Husky simulation, we modified Clearpathrobotics’
official GitHub implementation process according to our use

case. For wireless communication medium, we have used

IEEE 802.11 (Wi-Fi) interface. The agents are set to stream

datapoints through TCP/IP link and the master node has the

IP address of each of the deployed agents. The integrated

camera of those agents is used as the primary sensor and

the streaming image frames are resized into 32×32 before

treating them as camera topic of the ROS system. To measure

the communication performance, we have chosen one of the

state-of-the-art network simulators, NS-3 which is compatible

with the selected wireless stack. To integrate both Gazebo

and NS-3, SynchroSim is deployed as synchronizing middle-

ware. The choice of window size in SynchroSim is dependent

upon the respective velocity of the agents. To execute this

scenario, the velocity of the agents are varied accordingly.

The initial window size is set to 1mS and is adjusted with

Algorithm 1. For the LOS scenario, the agents are deployed

in an environment without obstruction as shown in fig 5.

The UGVs and the UAV are simulated with varying speeds

and the communication performance is measured with the

LOS abstraction is satisfied. The performance matrices are

the average delay and percentage of packet loss as stated in

section IV. The results are reported with the change in distance

between the agents. Also, two different communication sce-

narios are considered which we define as UGV to UGV and

UAV to UGV communication. The distance values reported

while reporting the experimental results are derived from the

positional coordinates of the agents. The whole simulation area

is segmented into symmetrical blocks and the synchronization

operation is operated when the agents move to some certain

points of the environment.

338

(a) (b)

Fig. 5: Simulation environment design in Gazebo for (a) LOS, and (b) NLOS communication. The whole environment is

100m×100m, and each grid stands for 20m×20m.

(a) (b)

Fig. 6: Result comparison between fixed window and adjustable window based approaches on both (a) LOS, and (b) NLOS

communication scheme using average delay (s) and packet loss probability (%) matrices considering a UGV to UGV

communication scenario. The fixed window size chosen here is 1ms and the average delay is reported on a batch of 10

packets. Blue lines stand for the average delay values and orange lines are for percentage of packet loss. In both cases the

dotted lines signify the results of our proposed method.

In the case of NLOS abstraction, the agents are set to run

within an object-populated environment. The signal strength

is hypothesized to be hampered under this circumstance. The

same reporting paradigm and communication scenarios are

used for this case also.

During UGV to UGV communication where the relative

velocity difference is lower, the agents are noticed to sustain

the data quantity during transmission for about 40m as shown

in fig 6. The average delay (average value of delays during

10 image frame transmission) is also below 0.1s in this

case. The velocity information of two selected agents for

a communication incident is extracted through subscribing

to /gazebo states/twist topic. The baseline fixed window-

based approach and the proposed adjustable window method

are working at par for LOS communication up to this point.

But fixed window-based approach begins to lose valuable

information drastically after this point subsequently giving rise

to delay. A slight adjustment in the sliding window value

(0.1ms in this case) is seen to contribute to almost 20%

improvement in retrieving information for LOS and at least

10% for NLOS condition when the agents are the furthest

distance apart in this simulation (100m). Also, the transmission

is becoming faster by a similar percentage compared to the

baseline.

While experimenting with UGV to UAV, severe perfor-

mance degradation is seen for NLOS communication, illus-

trated in fig 7. To be specific, almost all the data are lost when

the distance is 100m between the agents for the fixed width

339

(a) (b)

Fig. 7: Result comparison between fixed window and adjustable window based approaches on both (a) LOS, and (b)

NLOS communication scheme using average delay (s) and packet loss probability (%) matrices considering a UGV to UAV

communication scenario. Same measurement paradigm and legend conventions as fig 6 are used for this figure also.

method. This scenario also affects the proposed adjustable

window approach (0.3ms increase) which leaves a point of

improvement. Apart from this specific point, the adjusted

window showcases significant improvement for both LOS and

NLOS communication. Noticeably, the packet loss probability

is reduced by almost 30% when we consider a LOS scenario

and the agents are furthest apart.

VI. SYSTEM IMPLEMENTATION

In this section, we describe the devices used for our

hardware-level implementation, procedure details, and perfor-

mance evaluation.

With a view to validating the application compatibility of our

proposed algorithm on actual systems, we have conducted a

system-level implementation and evaluation. We have chosen

ROS-compatible Duckiebots to act as our deployed agents. A

brief description of the configuration of such robots are given

below:
Duckiebot:

The Duckiebot is an autonomous platform developed for

research purposes and convenient for studying complex real-

world problems. The bot used in our work has sensors like a

front-facing camera, programmable LED, IMU; camera inputs

are used for our implementation. The camera used in this

specific Duckiebot version is a 5MP, 1080p camera with a

wide view range of 160 degrees. We have assembled the

robot from scratch to make sure it is equipped with all the

necessary components we need to operate the experiment. A

fully assembled Duckiebot is illustrated in fig 8. Its onboard

processor of it is Nvidia Jetson Nano (2GB). Docker containers

are built to run the ROS nodes and all the necessary scripts

are written on Python.
As stated in the earlier sections, we have implemented a

master-based multi-agent communication scheme. This imple-

mentation operation is carried out as a corroboration attempt

of the simulation results obtained and described in section

V. An Ubuntu desktop was set up as the master node and

two Duckiebots were clients. The master node will have the

TCP of each agent and can receive or send information to any

cluster agents based on the requirement. This implementation

is carried out through a Publisher-Subscriber approach based

on ROS Melodic. The experimentation is done in a laboratory

environment. The experimental setup along with the sample

camera outputs (primary sensor) of the two Duckiebots are

illustrated in fig 8. The Duckiebots are set to roam around

in an approximately 2m x 2m area and some sample objects

are placed within it. The robots are continuously capturing

image frames and as soon as an object is detected by one

bot, it will send the corresponding frame to the master node.

The master node will then send this information to the other

bot. A visualizer is designed to check the completion of

data transmission and also the communication performance

packet delay and packet loss probability. The synchronization

algorithm was deployed on the docker container to run on

behind when it is needed to display the forwarded data from

the clients and also the performance metric values. The data

used for transmission is a gray scale image which is resized in

32×32 before sending. Under the aforementioned laboratory

setup, SynchroSim works seamlessly in a confined small scale

setting, ensuring negligible delay and no packet loss for both

LOS and NLOS abstraction. This successful demonstration

makes us hopeful to achieve satisfactory performance with our

ongoing deployment endeavor in wild contested environment.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented SynchroSim, a middle-

ware for co-simulation of heterogeneous multi-robot systems.

340

(a) (b) (c) (d)

Fig. 8: (a) A fully assembled Duckiebot (UGV), (b) Image data transmission between two Duckiebots using a master based

system in a laboratory environment. Sample sensor output of (c) agent 1, and (d) agent 2 within the experimental setup.

SynchroSim can adjust the size of the window based on the

speed differences between the agents in order to provide better

synchronization and communication. Even in the challenging

non-line-of-sight (NLOS) environments with heterogeneous

agents, experimental data show that our solution outperforms

the standard fixed window based strategy in terms of en-

suring fewer packet losses (on average 10% improvement).

Furthermore, we have also arranged a small scale cluster

in a laboratory environment with real world UGVs to get

an idea of the applicability of our proposed synchronizing

approach when it comes to real terrain. In this work, we

have demonstrated our synchronizing method on master-based

communication system. However, one interesting extension

can be implementing a masterless communication to ensure

more data security; one of the fundamental requirements of

battlefield scenarios. We plan to explore the facility offered

by ROS2 on top of our current system with the help of ROS

bridge to make the robots enable to use the Data Distribution

Service (DDS).

ACKNOWLEDGMENT

This work has been supported by U.S. Army Grant

#W911NF2120076. The authors would also like to thank Dr.

Kasthuri Jayarajah and Dr. Aryya Gangopadhyay for their con-

structive feedback on this work, Jonathan Harwood for setting

up the simulation and Sreenivasan Ramasamy Ramamurthy

for helping with Duckiebot assembly.

REFERENCES

[1] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and
Hans Vangheluwe. Co-simulation: a survey. ACM Computing Surveys
(CSUR), 51(3):1–33, 2018.

[2] Taemin Ahn, Jihoon Seok, Inbok Lee, and Junghee Han. Reliable flying
iot networks for uav disaster rescue operations. Mobile Information
Systems, 2018, 2018.

[3] Argho Sarkar and Maryam Rahnemoonfar. Uav-vqg: Visual question
generation framework on uav images. In 2021 IEEE International
Conference on Big Data (Big Data), pages 4211–4219. IEEE, 2021.

[4] Srikrishna Acharya, Amrutur Bharadwaj, Yogesh Simmhan, Aditya
Gopalan, Parimal Parag, and Himanshu Tyagi. Cornet: A co-simulation
middleware for robot networks. In 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), pages 245–251.
IEEE, 2020.

[5] Sangwoo Moon, John J Bird, Steve Borenstein, and Eric W Frew.
A gazebo/ros-based communication-realistic simulator for networked
suas. In 2020 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 1819–1827. IEEE, 2020.

[6] Miguel Calvo-Fullana, Daniel Mox, Alexander Pyattaev, Jonathan Fink,
Vijay Kumar, and Alejandro Ribeiro. Ros-netsim: A framework for
the integration of robotic and network simulators. IEEE Robotics and
Automation Letters, 6(2):1120–1127, 2021.

[7] Sabur Baidya, Zoheb Shaikh, and Marco Levorato. Flynetsim: An open
source synchronized uav network simulator based on ns-3 and ardupilot.
In Proceedings of the 21st ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pages 37–45,
2018.

[8] Aaron Staranowicz and Gian Luca Mariottini. A survey and comparison
of commercial and open-source robotic simulator software. In Pro-
ceedings of the 4th International Conference on PErvasive Technologies
Related to Assistive Environments, pages 1–8, 2011.

[9] Atsushi Suzuki, Kazuyuki Masutomi, Isao Ono, Hideaki Ishii, and
Takashi Onoda. Cps-sim: Co-simulation for cyber-physical systems
with accurate time synchronization. IFAC-PapersOnLine, 51(23):70–75,
2018.

[10] Michal Kudelski, Luca M Gambardella, and Gianni A Di Caro. Robonet-
sim: An integrated framework for multi-robot and network simulation.
Robotics and Autonomous Systems, 61(5):483–496, 2013.

[11] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and service robotics, pages 621–635. Springer, 2018.

[12] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni
Di Caro, Frederick Ducatelle, et al. Argos: a modular, parallel, multi-
engine simulator for multi-robot systems. Swarm intelligence, 6(4):271–
295, 2012.

[13] Gazebo. https://gazebosim.org/. Accessed: 2021-12-17.
[14] Andras Varga. Omnet++. In Modeling and tools for network simulation,

pages 35–59. Springer, 2010.
[15] Ns-2. https://www.isi.edu/nsnam/ns/. Accessed: 2021-12-17.
[16] George F Riley and Thomas R Henderson. The ns-3 network simulator.

In Modeling and tools for network simulation, pages 15–34. Springer,
2010.

[17] Mininet. http://mininet.org/. Accessed: 2021-12-17.
[18] Phillip J Durst, Christopher Goodin, Chris Cummins, Burhman Gates,

Burney Mckinley, Taylor George, Mitchell M Rohde, Matthew A
Toschlog, and Justin Crawford. A real-time, interactive simulation
environment for unmanned ground vehicles: The autonomous navigation
virtual environment laboratory (anvel). In 2012 Fifth international
conference on information and computing science, pages 7–10. IEEE,
2012.

[19] MaryAnne Fields, Ralph Brewer, Harris L Edge, Jason L Pusey,
Ed Weller, Dilip G Patel, and Charles A DiBerardino. Simulation tools
for robotics research and assessment. In Unmanned Systems Technology
XVIII, volume 9837, page 98370J. International Society for Optics and
Photonics, 2016.

[20] Unity simulator. https://unity.com/products/unity-simulation-pro. Ac-
cessed: 2021-12-17.

[21] Srikrishna Acharya, Amrutur Bharadwaj, Bharatheesha Mukunda, and
Yogesh Simmhan. Cornet 2.0: A co-simulation middleware for robot
networks. ArXiv, 2021.

[22] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

341

