
Follow the Soldiers with Optimized Single – Shot

Multibox Detection and Reinforcement Learning

Jumman Hossain

Department of Information Systems

University of Maryland Baltimore County

jumman.hossain@umbc.edu

Maliha Momtaz

Department of Information Systems

University of Maryland Baltimore County

mmomtaz1@umbc.edu

Abstract— Nowadays, autonomous cars are gaining traction

due to their numerous potential applications on battlefields and

in resolving a variety of other real-world challenges. The main

goal of our project is to build an autonomous system using

DeepRacer which will follow a specific person (for our project, a

soldier) when they will be moving in any direction. Two main

components to accomplish this project is an optimized Single –

Shot Multibox Detection (SSD) object detection model and a

Reinforcement Learning (RL) model. We accomplished the task

using SSD Lite instead of SSD and at the end, compared the

results among SSD, SSD with Neural Computing Stick (NCS)

and SSD Lite. Experimental results show that SSD Lite gives

better performance among these three techniques and exhibits a

considerable boost in inference speed (~2-3 times) without

compromising accuracy.

 Keywords—Autonomous Systems, DeepRacer, Reinforcement

Learning, SSD.

I. INTRODUCTION

Autonomous vehicles have a lot of importance in real life
applications. They are extremely useful in many purposes like
in battlefield, mine hunting and imaging through forests etc.
The main goal of our project is to build an autonomous system
so that it can follow a soldier. This project can be very useful in
many aspects. Soldiers can take these autonomous vehicles in
the battlefield which will be following them, and it can reduce
required number of soldiers in the battle, if those vehicles are
equipped with materials needed for battles and can perform
war for them. This could save the lives of many soldiers.
Besides, these following vehicles can accomplish a very
significant task know as Reconnaissance, which is a mission to
obtain information by visual observation or other detection
methods, about the activities and resources of an enemy or
potential enemy, or about the meteorologic, hydrographic, or
geographic characteristics of a particular area [1], if they are
programmed to do so. Humans and sometimes drones (such as
heavily wooded areas) may not be able to accomplish such
activities so efficiently by themselves.

In this work, we have optimized the SSD model for faster
inference without any loss of accuracy and also enhanced
navigation by mapping precise thresholds for action values in
order to provide a safe and meaningful action selection. On the
AWS DeepRacer device, we employed the OpenVino
Optimized SSD object-detection model, which was well-suited

for running high-performance inference with the least amount
of delay. SSD is much faster compared to two shot RPN
(Regional Proposal Network) based approaches. RPN based
approaches need two steps to detect objects. In the first step,
different regions are proposed and in the second step, multiple
objects are detected from these proposed networks. R-CNN is
an example of RPN based networks. On the other hand, SSD
only need one single step to detect multiple objects. Therefore,
SSD is much faster than RPN based approaches. We have used
SSD Lite instead of SSD and experimental results show that
SSD Lite produced better results.

II. RELATED WORK

There have been several projects already been developed

using AWS DeepRacer device. In the DeepDriver [2] project

they mimicked a real-world car that starts and stops at traffic

lights and stop signs. The logic for recognizing different

colors in traffic signals and detecting stop signs was built by

merging several computer vision skills, including OpenCV

image processing tools and object recognition machine

learning models. Off-road [3] project demonstrated a novel

method for autonomously navigating an AWS DeepRacer

device across a custom path defined by a series of QR codes

serving as checkpoints. To progress along the path, the AWS

DeepRacer decodes these QR codes and estimates the next

step's direction, and anyone can design their own unique path

by sequentially arranging the waypoint codes along the track.

The Mapping [4] project created a map using AWS

DeepRacer and SLAM (Simultaneous Localization and

Mapping), a technique for mapping an environment by

predicting a device's present location as it moves across space.

In the Follow the Leader (FTL) project [5], it makes use of an

object-detection machine learning model to enable the AWS

DeepRacer device to recognize and track a human. The FTL

allows to extend it by modifying the code to recognize other

objects for different use cases with developing custom model,

navigation logic, and add-on hardware (optional) to invent

new application. In this consideration, we tried to extend it by

changing its object detection model with SSD [6] lite and

modifying the logic in our use cases for following a soldier

whereas it significantly improved the inference performance

without sacrificing the accuracy.

III. SINGLE-SHOT MULTIBOX DETECTION

 Deep learning networks are very powerful tools and capable

of performing high level image classification tasks. However,

it is not wise to compare the ability of humans to machines for

such tasks. Humans can localize and classify things very

easily while machines are still struggling to perform complex

tasks [3].

 A few years ago, researchers developed the Region-

Convolutional Neural Network (R-CNN) [8] in order to

perform object detection, localization and classification. R-

CNN is a Region Proposal Network (RPN) based algorithm.

An R-CNN is a special type of CNN that is able to locate and

detect objects in images. The output is generally a set of

bounding boxes that closely match each of the detected

objects, as well as a class output for each detected object.

Many improvements of R-CNN were proposed later, such as,

Fast R-CNN [9], Faster R-CNN [10] etc. Some problems are

noticed with these networks. Training the dataset may take too

long and training happens in multiple phases. Besides, the

network can be very slow at the inference time. In order to

overcome these problems, networks like SSD were proposed

[6].

Single Shot means that the tasks of object localization and

classification are done in a single forward pass of the network.

Multibox is the name of a technique for bounding box

regression developed by Szegedy et al. [6]. The network is an

object detector that also classifies those detected objects (Fig.

1).

Figure 1: SSD architecture

 SSD’s architecture builds on the venerable VGG-16 [11]

architecture but discards the fully connected layers. The

reason VGG-16 was used as the base network is because of its

strong performance in high quality image classification tasks

and its popularity for problems where transfer learning helps

in improving results. Instead of the original VGG fully

connected layers, a set of auxiliary convolutional layers (from

conv6 onwards) were added, thus enabling to extract features

at multiple scales and progressively decrease the size of the

input to each subsequent layer.

 This network makes multiple predictions containing

boundary boxes and confidence scores; therefore, it is called

multibox, which is a method for fast class-agnostic bounding

box coordinate proposals. It computes both the location and

class scores using small convolution filters. SSD uses VGG16

to extract feature maps. Then it detects objects using the

Conv4_3 layer. For each cell (also called location), it makes 4

object predictions. Each prediction consists of a boundary box

and 21 scores for each class (one extra class for no object),

and the highest score is picked as the class for the bounded

object. Conv4_3 makes a total of 38 × 38 × 4 predictions: four

predictions per cell regardless of the depth of the feature maps.

Many predictions contain no object and SSD reserves a class

“0” to indicate it has no objects. SSD computes both the

location and class scores using small convolution filters. After

extracting the feature maps, SSD applies 3 × 3 convolution

filters for each cell to make predictions. (These filters compute

the results just like the regular CNN filters.) Each filter

outputs 25 channels: 21 scores for each class plus one

boundary box [12].

 Generally, SSD uses multiple layers (multi-scale feature

maps) to detect objects independently as they improve

accuracy significantly. As CNN reduces the spatial dimension

gradually, the resolution of the feature maps also decreases.

SSD uses lower resolution layers to detect larger scale objects.

SSD adds 6 more auxiliary convolution layers after the

VGG16. Five of them are added for object detection. In three

of those layers, we make 6 predictions instead of 4. In total,

SSD makes 8732 predictions using 6 layers.

SSD vs SSD Lite: Key important difference of SSD Lite

compared to SSD is that the backbone of SSD Lite has only a

fraction of the weights of the latter. Therefore, in SSD Lite,

the Data Augmentation focuses more on making the model

robust to objects of variable sizes than trying to avoid

overfitting. Consequently, SSD Lite uses only a subset of the

SSD transformations and this way it avoids the over-

regularization of the model [13].

IV. OVERALL

We would like to give some descriptions about the AWS
DeepRacer we have worked with. Deep Racer is a fully
automated 1 / 18th size racing car driven by RL [14]. It can
perform on the global autonomous racing league or compete
virtually from anywhere in the world. RL models can be
trained, evaluated, and tuned in the online simulator and
deployed onto the physical deep racer for a real-world
autonomous driving experience (Fig 2.) The car has many
different parts. It has an adapter between the power bank and
the car. It can be seen as a two-sided USB-C connector. It has
USB to USB micro cable, which is used to connect the car to
the computer for things such as model transfer. It also has a
charger for the car battery, an adapter to charge the compute
battery and a power bank which is used to power the computer
on the car.

If the hood is removed from the car, many other parts can
be seen. It contains an HD camera which is used to take images
of the terrain in front of the vehicle. It is used to see where the

car is going. Two cameras can be used to set up and train
models, if necessary. It has two additional USB ports on two

 Figure 2: DeepRacer RL model deployment flow

sides, which are left for future expansion. Besides, it has a full-
size HDMI port, which helps to enable plugging the car into a
monitor, a micro-USB port, which help to enable the setup and
model deployment and a micro-USB-C port, which is used to
connect to the power bank. It has total 32 gigs of storage, 4 GB
RAM and buttons are on and off button, reset button. It also
has LEDs to indicate whether the device is booted up or
connected to Wi-Fi. The car chassis contains the shocks and 4
wheels for driving. The wheels sometimes look like they are
not exactly pointing forward. This is because the car is using
Ackermann steering, which is a steering method that turns the
wheels at slightly odd angles to prevent slipping when the car
goes around the corner.

Deep Racer can also contain additional parts. It is possible
to integrate two cameras instead of one and when two cameras
are added, it works as a stereo camera. Deep Racer with two
cameras is called Deep Racer Evo. Using two cameras can be
very helpful sometimes because set of inputs become smaller
while using only one camera. Stereo cameras are specially
important for object avoidance. Deep Racer is also equipped
with a LiDAR sensor. The LiDAR sensor allows the
DeepRacer to always know its distance to all other objects,
such as other DeepRacer’s or obstacles on the course. This
helps the DeepRacer with obstacle avoidance actions, such as
passing another DeepRacer in a Head-to-Head race. Besides, a
neural computing stick (NCS) can be connected optionally to
the USB slot at the rear end of the car to improve the inference
performance.

At first, we planned to solve the problem using our own
reinforcement learning model. Reinforcement learning means
the car will receive rewards for intended action and punishment
for unintended action. Specifically, the agent's (soldiers)
position based on the agent (soldiers) action and returns a
reward and an updated camera image. The experiences
collected in the form of state, action, reward, and new state are
used to update the neural network periodically. The updated
network models are used to create more experiences. After
training, it tries to accomplish the intended action in order to
receive rewards.

However, later on we came to know that the DeepRacer
device just runs inference on the trained RL models, and the
training is provided through AWS console. The open-source
device software doesn’t consist of the training phase. Hence, it

doesn’t directly allow to modify the already implemented RL
algorithms on the device itself since it just runs inference as
part of the AWS-DeepRacer-inference-package which runs
with the core application. However, we figured out some
possible ways to modify the training to use on our choice of
algorithms and environments, including training for real world
surroundings. But the problem is - current firmware on the car
might struggle with inference for too robust models and a
workaround could be to use a remote entity for inference.
Considering such issues, we tried to optimize the SSD model
for faster inference without sacrificing accuracy and enhance
the navigation by mapping precise thresholds for action values
in order to provide a safe and meaningful action selection. We
used OpenVino Optimized SSD object-detection model that
suited to run high-performance inference with minimum
latency on the AWS DeepRacer device.

Our system has four major parts: sensor fusion, object
detection, navigation, and servo. Sensor fusion node publishes
camera images and passes sensor information to object
detection node. The object detection node detects bounding
boxes and calculate the distance difference between the current
person and the new person to be detected. Then object
detection node passes the distance difference information to the
navigation node. The navigation node then plans actions
accordingly and pass information to the servo node, so that it
can accomplish the action.

V. METHODOLOGY

At first, the sensor fusion node publishes sensor data

from single camera and pass those data to the optimized SSD

object detection model. The object detection model detects

bounding boxes and calculate normalized delta between

current bounding box center and the target center. Normalized

delta means the distance difference between the bounding box

center of the current person and the bounding box center of the

new person to be detected. Then this node passes this

normalized delta information to the navigation node and the

navigation node plans action based on the data received from

the object detection node. The actions which needed to be

planned are at what steering angle the car should move to

follow the new detected person and at what speed the car

should move. The navigation node lets the servo node know

about the action plans and map [-1, 1] values to servo

calibration. The servo node then sets pwm duty cycle on

servo. The same steps happen to the speed to adjust. The

follow the soldiers flow diagram is shown below (Fig. 3).

Inference (Decision): The inference step is handled by the
object detection ROS package, which creates the object
detection node that is responsible for collecting sensor data
(camera images) from the sensor fusion package and running
object detection on the specified object. When an object is
detected, the object detection node defines a target center that
will serve as a reference for calculating the detection error
(delta) everytime the object is detected. This stage involves the
node publishing the normalized delta data from the target point
as DetectionDeltaMsg data, which contains information about
the person or object's location.

 Figure 3: Follow the soldier’s flow

 The object detection node recognizes an object or a person in
each input image. It then gets its bounding box center
coordinates and calculates the (x, y) delta between the current
position of the detected object and target position (Fig. 4). The
DetectionDeltaMsg data is published to the object detection
delta topic, which is read by the navigation node. If there is no
object detected in an image, the object detection node reports a
zero error (delta), indicating that the DeepRacer has already
arrived at the target place and does not need to be moved.

Action (Navigation): The navigation ROS package creates the
navigation node, which determines which action to send based
on the normalized detection error (delta) received from the
object detection node. The node accounts for the various
combinations of expected (x, y) delta values (Fig. 5) using a
very simple action space.

 There are nine distinct instances (Fig. 6) to consider in
relation to the delta x, delta y values. These delta x, delta y
parameters specify the distance between the target position and
the center of the bounding box in the current image after object
detection.

 It is important to link particular criteria for the delta x and
delta y values to the actions that have been set in order to
ensure that actions are selected in a safe and relevant manner.

 Figure 4: Delta value calculation

The actual delta values used to activate each action in the
action space are defined empirically by collecting the delta x,
delta y values of the object (person standing in front of camera)
at various positions relative to the DeepRacer device's camera.
In relation to the object's (person's) position from the camera,
we may use these delta x, delta y values to define a safe range
of actions. The DeepRacer servo node uses these brackets to
map steering and speed parameters.

Based on the brackets of steering and throttle actions, the
navigation node plans and publishes an action that the servo
node can pick up for every combination of the normalized delta
combination in x and y (delta x and delta y).With the help of
this pipeline for perception-inference-action on a loop, the
DeepRacer detects a soldier (person), plans what action will be
required to bring that soldier (person) to the target position, and
performs that action for each image on which it infers, thereby
achieving the goal of following a soldier (person) in real time.

Figure 5: Possible cases for bounding box center movement

 Figure 6: Cases to handle in action Space

Case Steering Throttle

1 Left Forward

2 NULL Forward

3 Right Forward

4 Left NULL

5 NULL NULL

6 Right NULL

7 Right Back

8 NULL Back

9 Left Back

VI. EXPERIMENTAL RESULTS

We have implemented the follow the soldier’s project using

SSD with Neural Computing Stick (NCS) and SSD Lite. Our

experimental results show that, SSD with NCS provides better

results than SSD and SSD Lite provides the best results among

the three. SSD Lite exhibits a considerable boost in inference

speed (~2-3 times) without compromising accuracy. The

experiment has been conducted while the car was moving in

both forward and backward direction. A table containing the

execution time for each action (forward or backward) has been

included in [Fig. 7], and the time was calculated in

milliseconds.

Direction SSD

SSD with

NCS SSD Lite

Forward

0.42902 0.22644 0.22481

0.39288 0.22303 0.20337

0.52259 0.23443 0.22549

0.49419 0.19288 0.22973

0.45433 0.19351 0.22974

0.48836 0.25596 0.22085

0.38706 0.21868 0.23718

0.38466 0.19668 0.26686

0.37103 0.19136 0.22443

0.40832 0.18857 0.23024

0.42056 0.21311 0.24348

Reverse

0.45072 0.19344 0.23044

0.38128 0.22119 0.20888

0.46506 0.19535 0.22706

0.39139 0.18449 0.18941

0.49244 0.19311 0.21787

0.38903 0.18408 0.25114

0.44877 0.19841 0.22736

0.44536 0.22775 0.25937

0.49877 0.22661 0.24518

0.46849 0.24781 0.24683

0.47263 0.19997 0.19531

0.42865 0.21354 0.18401

Figure 7: Execution time (ms) for each action

VII. CONCLUSION AND FUTURE DIRECTION

Currently, the Deep Racer can detect only one soldier (person)

at a time and follow that particular soldier (person). Our plan

is to extend the model in such a way, so that it can detect

multiple soldiers (person), follow a particular one with the

help of a marker among those multiple soldiers (person) and

update it accordingly. We have been able to detect multiple

soldiers but the task of integrating the code on the Deep Racer

device is remaining. We would also like to design an object-

avoidance model using RL along with following a soldier.

(Currently a RL reward function designed where it can avoid

box objects in simulation) (Fig. 9).

Apart from the aforementioned two aspects, we will attempt to

leverage add-ons such as a depth camera to compute the

distance to an item and extend the navigation node concept to

utilize the depth aspect to fine-tune the object tracking

capacity.

Figure 8: Comparison of SSD, SSD with NCS, and SSD Lite

Figure 9: Object avoidance RL model performing in

simulation

We would also like to add some interesting ideas, which could

be implemented in the future using the Deep Racer device. A

security bot can be created which identifies suspicious

activities and reports it by moving safely towards the cause,

unlike security cameras which can have blind spots. To

implement this, we need to change the type of object which

needs to be detected instead of a person. Also, the object

detection part of the Deep Racer can be programmed in such a

way so that it sounds alarms whenever it detects any

dangerous substance like gun, knife, smoke etc.

VIII. ACKNOWLEDGMENT

This research is supported by NSF CNS- 2050999 and U.S.

Army Grant No. W911NF2120076.

REFERENCES

[1] https://en.wikipedia.org/wiki/Reconnaissance

[2] https://github.com/jochem725/deepdriver

[3] https://github.com/aws-deepracer/aws-deepracer-offroad-sample-project

[4] https://github.com/aws-deepracer/aws-deepracer-mapping-sample-
project

[5] https://github.com/aws-deepracer/aws-deepracer-follow-the-leader-
sample-project

[6] SSD: Single Shot MultiBox Detector; Wei Liu, Dragomir Anguelov,
Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
Alexander C. Berg; ECCV; Dec 29, 2016.

[7] https://towardsdatascience.com/understanding-ssd-multibox-real-time-
object-detection-in-deep-learning-495ef744fab

[8] Rich feature hierarchies for accurate object detection and semantic
segmentation; Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra
Malik; arXiv:1311.2524 (2014)

[9] Fast R-CNN; Ross Girshick; arXiv:1504.08083 (2015)

[10] Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks; Shaoqing Ren, Kaiming He, Ross Girshick, Jian
Sun; arXiv:1506.01497 (2016)

[11] Very Deep Convolutional Networks for Large - Scale Image
Recognition; Karen Simonyan, Andrew Zisserman; arXiv preprint
arXiv:1409.1556 (2014)

[12] https://jonathan-hui.medium.com/ssd-object-detection-single-shot-
multibox-detector-for-real-time-processing-9bd8deac0e06

[13] https://pytorch.org/blog/torchvision-ssdlite-implementation

[14] https://aws.amazon.com/deepracer/

