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Abstract— Nowadays, autonomous cars are gaining traction 

due to their numerous potential applications on battlefields and 

in resolving a variety of other real-world challenges. The main 

goal of our project is to build an autonomous system using 

DeepRacer which will follow a specific person (for our project, a 

soldier) when they will be moving in any direction. Two main 

components to accomplish this project is an optimized Single – 

Shot Multibox Detection (SSD) object detection model and a 

Reinforcement Learning (RL) model. We accomplished the task 

using SSD Lite instead of SSD and at the end, compared the 

results among SSD, SSD with Neural Computing Stick (NCS) 

and SSD Lite. Experimental results show that SSD Lite gives 

better performance among these three techniques and exhibits a 

considerable boost in inference speed (~2-3 times) without 

compromising accuracy. 

   Keywords—Autonomous Systems, DeepRacer, Reinforcement 

Learning, SSD. 

I.  INTRODUCTION  

Autonomous vehicles have a lot of importance in real life 
applications. They are extremely useful in many purposes like 
in battlefield, mine hunting and imaging through forests etc. 
The main goal of our project is to build an autonomous system 
so that it can follow a soldier. This project can be very useful in 
many aspects. Soldiers can take these autonomous vehicles in 
the battlefield which will be following them, and it can reduce 
required number of soldiers in the battle, if those vehicles are 
equipped with materials needed for battles and can perform 
war for them. This could save the lives of many soldiers. 
Besides, these following vehicles can accomplish a very 
significant task know as Reconnaissance, which is a mission to 
obtain information by visual observation or other detection 
methods, about the activities and resources of an enemy or 
potential enemy, or about the meteorologic, hydrographic, or 
geographic characteristics of a particular area [1], if they are 
programmed to do so. Humans and sometimes drones (such as 
heavily wooded areas) may not be able to accomplish such 
activities so efficiently by themselves. 

In this work, we have optimized the SSD model for faster 
inference without any loss of accuracy and also enhanced 
navigation by mapping precise thresholds for action values in 
order to provide a safe and meaningful action selection. On the 
AWS DeepRacer device, we employed the OpenVino 
Optimized SSD object-detection model, which was well-suited 

for running high-performance inference with the least amount 
of delay. SSD is much faster compared to two shot RPN 
(Regional Proposal Network) based approaches. RPN based 
approaches need two steps to detect objects. In the first step, 
different regions are proposed and in the second step, multiple 
objects are detected from these proposed networks. R-CNN is 
an example of RPN based networks. On the other hand, SSD 
only need one single step to detect multiple objects. Therefore, 
SSD is much faster than RPN based approaches. We have used 
SSD Lite instead of SSD and experimental results show that 
SSD Lite produced better results. 

II. RELATED WORK 

There have been several projects already been developed 

using AWS DeepRacer device. In the DeepDriver [2] project 

they mimicked a real-world car that starts and stops at traffic 

lights and stop signs. The logic for recognizing different 

colors in traffic signals and detecting stop signs was built by 

merging several computer vision skills, including OpenCV 

image processing tools and object recognition machine 

learning models. Off-road [3] project demonstrated a novel 

method for autonomously navigating an AWS DeepRacer 

device across a custom path defined by a series of QR codes 

serving as checkpoints. To progress along the path, the AWS 

DeepRacer decodes these QR codes and estimates the next 

step's direction, and anyone can design their own unique path 

by sequentially arranging the waypoint codes along the track. 

The Mapping [4] project created a map using AWS 

DeepRacer and SLAM (Simultaneous Localization and 

Mapping), a technique for mapping an environment by 

predicting a device's present location as it moves across space. 

In the Follow the Leader (FTL) project [5], it makes use of an 

object-detection machine learning model to enable the AWS 

DeepRacer device to recognize and track a human. The FTL 

allows to extend it by modifying the code to recognize other 

objects for different use cases with developing custom model, 

navigation logic, and add-on hardware (optional) to invent 

new application. In this consideration, we tried to extend it by 

changing its object detection model with SSD [6] lite and 

modifying the logic in our use cases for following a soldier 

whereas it significantly improved the inference performance 

without sacrificing the accuracy. 



III. SINGLE-SHOT MULTIBOX DETECTION  

    Deep learning networks are very powerful tools and capable 

of performing high level image classification tasks. However, 

it is not wise to compare the ability of humans to machines for 

such tasks. Humans can localize and classify things very 

easily while machines are still struggling to perform complex 

tasks [3].  

 

    A few years ago, researchers developed the Region-

Convolutional Neural Network (R-CNN) [8] in order to 

perform object detection, localization and classification. R-

CNN is a Region Proposal Network (RPN) based algorithm. 

An R-CNN is a special type of CNN that is able to locate and 

detect objects in images. The output is generally a set of 

bounding boxes that closely match each of the detected 

objects, as well as a class output for each detected object. 

Many improvements of R-CNN were proposed later, such as, 

Fast R-CNN [9], Faster R-CNN [10] etc. Some problems are 

noticed with these networks. Training the dataset may take too 

long and training happens in multiple phases. Besides, the 

network can be very slow at the inference time. In order to 

overcome these problems, networks like SSD were proposed 

[6].  

 

Single Shot means that the tasks of object localization and 

classification are done in a single forward pass of the network. 

Multibox is the name of a technique for bounding box 

regression developed by Szegedy et al. [6]. The network is an 

object detector that also classifies those detected objects (Fig. 

1).  

 
      

Figure 1: SSD architecture 

 

 SSD’s architecture builds on the venerable VGG-16 [11] 

architecture but discards the fully connected layers. The 

reason VGG-16 was used as the base network is because of its 

strong performance in high quality image classification tasks 

and its popularity for problems where transfer learning helps 

in improving results. Instead of the original VGG fully 

connected layers, a set of auxiliary convolutional layers (from 

conv6 onwards) were added, thus enabling to extract features 

at multiple scales and progressively decrease the size of the 

input to each subsequent layer. 

 

   This network makes multiple predictions containing 

boundary boxes and confidence scores; therefore, it is called 

multibox, which is a method for fast class-agnostic bounding 

box coordinate proposals. It computes both the location and 

class scores using small convolution filters. SSD uses VGG16 

to extract feature maps. Then it detects objects using the 

Conv4_3 layer. For each cell (also called location), it makes 4 

object predictions. Each prediction consists of a boundary box 

and 21 scores for each class (one extra class for no object), 

and the highest score is picked as the class for the bounded 

object. Conv4_3 makes a total of 38 × 38 × 4 predictions: four 

predictions per cell regardless of the depth of the feature maps. 

Many predictions contain no object and SSD reserves a class 

“0” to indicate it has no objects. SSD computes both the 

location and class scores using small convolution filters. After 

extracting the feature maps, SSD applies 3 × 3 convolution 

filters for each cell to make predictions. (These filters compute 

the results just like the regular CNN filters.) Each filter 

outputs 25 channels: 21 scores for each class plus one 

boundary box [12].  

 

   Generally, SSD uses multiple layers (multi-scale feature 

maps) to detect objects independently as they improve 

accuracy significantly. As CNN reduces the spatial dimension 

gradually, the resolution of the feature maps also decreases. 

SSD uses lower resolution layers to detect larger scale objects. 

SSD adds 6 more auxiliary convolution layers after the 

VGG16. Five of them are added for object detection. In three 

of those layers, we make 6 predictions instead of 4. In total, 

SSD makes 8732 predictions using 6 layers. 

 

SSD vs SSD Lite: Key important difference of SSD Lite 

compared to SSD is that the backbone of SSD Lite has only a 

fraction of the weights of the latter. Therefore, in SSD Lite, 

the Data Augmentation focuses more on making the model 

robust to objects of variable sizes than trying to avoid 

overfitting. Consequently, SSD Lite uses only a subset of the 

SSD transformations and this way it avoids the over-

regularization of the model [13]. 

IV. OVERALL 

We would like to give some descriptions about the AWS 
DeepRacer we have worked with. Deep Racer is a fully 
automated 1 / 18th size racing car driven by RL [14]. It can 
perform on the global autonomous racing league or compete 
virtually from anywhere in the world. RL models can be 
trained, evaluated, and tuned in the online simulator and 
deployed onto the physical deep racer for a real-world 
autonomous driving experience (Fig 2.) The car has many 
different parts. It has an adapter between the power bank and 
the car. It can be seen as a two-sided USB-C connector. It has 
USB to USB micro cable, which is used to connect the car to 
the computer for things such as model transfer. It also has a 
charger for the car battery, an adapter to charge the compute 
battery and a power bank which is used to power the computer 
on the car. 

If the hood is removed from the car, many other parts can 
be seen. It contains an HD camera which is used to take images 
of the terrain in front of the vehicle. It is used to see where the 



car is going. Two cameras can be used to set up and train 
models, if necessary. It has two additional USB ports on two  

 

 

  Figure 2: DeepRacer RL model deployment flow 

sides, which are left for future expansion. Besides, it has a full-
size HDMI port, which helps to enable plugging the car into a 
monitor, a micro-USB port, which help to enable the setup and 
model deployment and a micro-USB-C port, which is used to 
connect to the power bank. It has total 32 gigs of storage, 4 GB 
RAM and buttons are on and off button, reset button. It also 
has LEDs to indicate whether the device is booted up or 
connected to Wi-Fi. The car chassis contains the shocks and 4 
wheels for driving. The wheels sometimes look like they are 
not exactly pointing forward. This is because the car is using 
Ackermann steering, which is a steering method that turns the 
wheels at slightly odd angles to prevent slipping when the car 
goes around the corner.  

Deep Racer can also contain additional parts. It is possible 
to integrate two cameras instead of one and when two cameras 
are added, it works as a stereo camera. Deep Racer with two 
cameras is called Deep Racer Evo. Using two cameras can be 
very helpful sometimes because set of inputs become smaller 
while using only one camera. Stereo cameras are specially 
important for object avoidance. Deep Racer is also equipped 
with a LiDAR sensor. The LiDAR sensor allows the 
DeepRacer to always know its distance to all other objects, 
such as other DeepRacer’s or obstacles on the course. This 
helps the DeepRacer with obstacle avoidance actions, such as 
passing another DeepRacer in a Head-to-Head race. Besides, a 
neural computing stick (NCS) can be connected optionally to 
the USB slot at the rear end of the car to improve the inference 
performance. 

At first, we planned to solve the problem using our own 
reinforcement learning model. Reinforcement learning means 
the car will receive rewards for intended action and punishment 
for unintended action. Specifically, the agent's (soldiers) 
position based on the agent (soldiers) action and returns a 
reward and an updated camera image. The experiences 
collected in the form of state, action, reward, and new state are 
used to update the neural network periodically. The updated 
network models are used to create more experiences. After 
training, it tries to accomplish the intended action in order to 
receive rewards. 

However, later on we came to know that the DeepRacer 
device just runs inference on the trained RL models, and the 
training is provided through AWS console. The open-source 
device software doesn’t consist of the training phase. Hence, it 

doesn’t directly allow to modify the already implemented RL 
algorithms on the device itself since it just runs inference as 
part of the AWS-DeepRacer-inference-package which runs 
with the core application. However, we figured out some 
possible ways to modify the training to use on our choice of 
algorithms and environments, including training for real world 
surroundings. But the problem is - current firmware on the car 
might struggle with inference for too robust models and a 
workaround could be to use a remote entity for inference. 
Considering such issues, we tried to optimize the SSD model 
for faster inference without sacrificing accuracy and enhance 
the navigation by mapping precise thresholds for action values 
in order to provide a safe and meaningful action selection. We 
used OpenVino Optimized SSD object-detection model that 
suited to run high-performance inference with minimum 
latency on the AWS DeepRacer device. 

Our system has four major parts: sensor fusion, object 
detection, navigation, and servo. Sensor fusion node publishes 
camera images and passes sensor information to object 
detection node. The object detection node detects bounding 
boxes and calculate the distance difference between the current 
person and the new person to be detected. Then object 
detection node passes the distance difference information to the 
navigation node. The navigation node then plans actions 
accordingly and pass information to the servo node, so that it 
can accomplish the action. 

V. METHODOLOGY 

At first, the sensor fusion node publishes sensor data 

from single camera and pass those data to the optimized SSD 

object detection model. The object detection model detects 

bounding boxes and calculate normalized delta between 

current bounding box center and the target center. Normalized 

delta means the distance difference between the bounding box 

center of the current person and the bounding box center of the 

new person to be detected. Then this node passes this 

normalized delta information to the navigation node and the 

navigation node plans action based on the data received from 

the object detection node. The actions which needed to be 

planned are at what steering angle the car should move to 

follow the new detected person and at what speed the car 

should move. The navigation node lets the servo node know 

about the action plans and map [-1, 1] values to servo 

calibration. The servo node then sets pwm duty cycle on 

servo. The same steps happen to the speed to adjust. The 

follow the soldiers flow diagram is shown below (Fig. 3). 

 
Inference (Decision): The inference step is handled by the 
object detection ROS package, which creates the object 
detection node that is responsible for collecting sensor data 
(camera images) from the sensor fusion package and running 
object detection on the specified object. When an object is 
detected, the object detection node defines a target center that 
will serve as a reference for calculating the detection error 
(delta) everytime the object is detected. This stage involves the 
node publishing the normalized delta data from the target point 
as DetectionDeltaMsg data, which contains information about 
the person or object's location. 



 

 

   Figure 3: Follow the soldier’s flow 

    The object detection node recognizes an object or a person in 
each input image. It then gets its bounding box center 
coordinates and calculates the (x, y) delta between the current 
position of the detected object and target position (Fig. 4). The 
DetectionDeltaMsg data is published to the object detection 
delta topic, which is read by the navigation node. If there is no 
object detected in an image, the object detection node reports a 
zero error (delta), indicating that the DeepRacer has already 
arrived at the target place and does not need to be moved. 

Action (Navigation): The navigation ROS package creates the 
navigation node, which determines which action to send based 
on the normalized detection error (delta) received from the 
object detection node. The node accounts for the various 
combinations of expected (x, y) delta values (Fig. 5) using a 
very simple action space. 

    There are nine distinct instances (Fig. 6) to consider in 
relation to the delta x, delta y values. These delta x, delta y 
parameters specify the distance between the target position and 
the center of the bounding box in the current image after object 
detection. 

    It is important to link particular criteria for the delta x and 
delta y values to the actions that have been set in order to 
ensure that actions are selected in a safe and relevant manner.  

 

   Figure 4: Delta value calculation  

 

The actual delta values used to activate each action in the 
action space are defined empirically by collecting the delta x, 
delta y values of the object (person standing in front of camera) 
at various positions relative to the DeepRacer device's camera. 
In relation to the object's (person's) position from the camera, 
we may use these delta x, delta y values to define a safe range 
of actions. The DeepRacer servo node uses these brackets to 
map steering and speed parameters. 

Based on the brackets of steering and throttle actions, the 
navigation node plans and publishes an action that the servo 
node can pick up for every combination of the normalized delta 
combination in x and y (delta x and delta y).With the help of 
this pipeline for perception-inference-action on a loop, the 
DeepRacer detects a soldier (person), plans what action will be 
required to bring that soldier (person) to the target position, and 
performs that action for each image on which it infers, thereby 
achieving the goal of following a soldier (person) in real time. 

 

 

Figure 5: Possible cases for bounding box center movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Figure 6: Cases to handle in action Space  

Case Steering Throttle 

1 Left Forward 

2 NULL Forward 

3 Right Forward 

4 Left NULL 

5 NULL NULL 

6 Right NULL 

7 Right Back 

8 NULL Back 

9 Left Back 



VI. EXPERIMENTAL RESULTS 

We have implemented the follow the soldier’s project using 

SSD with Neural Computing Stick (NCS) and SSD Lite. Our 

experimental results show that, SSD with NCS provides better 

results than SSD and SSD Lite provides the best results among 

the three. SSD Lite exhibits a considerable boost in inference 

speed (~2-3 times) without compromising accuracy. The 

experiment has been conducted while the car was moving in 

both forward and backward direction. A table containing the 

execution time for each action (forward or backward) has been 

included in [Fig. 7], and the time was calculated in 

milliseconds. 

 

Direction SSD 

SSD with 

NCS SSD Lite 

Forward  

0.42902 0.22644 0.22481 

0.39288 0.22303 0.20337 

0.52259 0.23443 0.22549 

0.49419 0.19288 0.22973 

0.45433 0.19351 0.22974 

0.48836 0.25596 0.22085 

0.38706 0.21868 0.23718 

0.38466 0.19668 0.26686 

0.37103 0.19136 0.22443 

0.40832 0.18857 0.23024 

0.42056 0.21311 0.24348 

Reverse 

0.45072 0.19344 0.23044 

0.38128 0.22119 0.20888 

0.46506 0.19535 0.22706 

0.39139 0.18449 0.18941 

0.49244 0.19311 0.21787 

0.38903 0.18408 0.25114 

0.44877 0.19841 0.22736 

0.44536 0.22775 0.25937 

0.49877 0.22661 0.24518 

0.46849 0.24781 0.24683 

0.47263 0.19997 0.19531 

0.42865 0.21354 0.18401 

 

Figure 7: Execution time (ms) for each action 

VII. CONCLUSION AND FUTURE DIRECTION 

 

Currently, the Deep Racer can detect only one soldier (person) 

at a time and follow that particular soldier (person). Our plan 

is to extend the model in such a way, so that it can detect 

multiple soldiers (person), follow a particular one with the 

help of a marker among those multiple soldiers (person) and 

update it accordingly. We have been able to detect multiple 

soldiers but the task of integrating the code on the Deep Racer 

device is remaining. We would also like to design an object-

avoidance model using RL along with following a soldier. 

(Currently a RL reward function designed where it can avoid 

box objects in simulation) (Fig. 9).  

Apart from the aforementioned two aspects, we will attempt to 

leverage add-ons such as a depth camera to compute the 

distance to an item and extend the navigation node concept to 

utilize the depth aspect to fine-tune the object tracking 

capacity. 

 

 
 

 
 

 

Figure 8: Comparison of SSD, SSD with NCS, and SSD Lite 

 

 
 

Figure 9: Object avoidance RL model performing in 

simulation 



 

We would also like to add some interesting ideas, which could 

be implemented in the future using the Deep Racer device. A 

security bot can be created which identifies suspicious 

activities and reports it by moving safely towards the cause, 

unlike security cameras which can have blind spots. To 

implement this, we need to change the type of object which 

needs to be detected instead of a person. Also, the object 

detection part of the Deep Racer can be programmed in such a 

way so that it sounds alarms whenever it detects any 

dangerous substance like gun, knife, smoke etc. 
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